Remarks on Hansson's Model of Value-dependent Scientific Corpus

Auteurs

  • Philippe Stamenkovic Ben-Gurion University of the Negev

DOI :

https://doi.org/10.20416/LSRSPS.V10I1.4

Mots-clés :

values in science, corpus model, Sven Ove Hansson, context of application, corpus entry requirement

Résumé

Cet article traite du modèle de corpus de Hansson pour l'influence des valeurs (en particulier non-épistémiques) dans la phase d'acceptation/rejet d'hypothèse de l'enquête scientifique. Ce modèle de corpus est basé sur les concepts très convaincants, développés par Hansson, de corpus scientifique et de science "au sens large". L'article présente le modèle de corpus de Hansson pour l'influence des valeurs, effectue des commentaires sur ses origines, analyse ses avantages et désavantages, et conclut que c'est un très bon candidat pour gérer l'influence des valeurs, puisque contrairement à d'autres modèles de la littérature, il est simple, il fournit une procédure universelle pour gérer les valeurs, et il préserve systématiquement l'intégrité épistémique de la science. L'article commente les difficultés associées à ce modèle : comment il gère les valeurs non-épistémiques controversées; les difficultés associées au fait de systématiquement prendre l'exigence maximum d'entrée dans le corpus (difficulté à identifier cette exigence maximum, et non-optimalité par rapport aux autres exigences moins élevées); et la question de savoir si un énoncé appartenant au corpus peut néanmoins être considéré comme insuffisamment fiable pour une application pratique. Je note que ces questions ne remettent pas en cause l'applicabilité du modèle de corpus, mais soulignent plutôt le besoin de définir précisément la frontière entre le corpus et son contexte d'application. Enfin, je recommande des travaux empiriques (en particulier, des interviews de scientifiques et ingénieurs) afin de mieux évaluer ces questions.

Références

Bueter, A. (2021). Rationality and the value-freedom of science. In W. S. . M. Knauff (Ed.), Handbook of Rationality, pp. 757–766. MIT Press.
Carrier, M. (2022). What does good science-based advice to politics look like? Journal for General Philosophy of Science 53(1), 5–21.
ChoGlueck, C. (2018). The error is in the gap: Synthesizing accounts for societal values in science. Philosophy of Science 85(4), 704–725.
Churchman, C. W. (1948). Statistics, pragmatics, induction. Philosophy of Science 15 (3), 249–268.
Douglas, H. (2009). Science, policy, and the value-free ideal. University of Pittsburgh Pre.
Elliott, K. C. (2011). Is a little pollution good for you?: Incorporating societal values in environ- mental research. OUP USA.
Elliott, K. C. (2013). Douglas on values: From indirect roles to multiple goals. Studies in History and Philosophy of Science Part A 44 (3), 375–383.
Elliott, K. C. (2017). A tapestry of values: An introduction to values in science. Oxford University Press.
Elliott, K. C. and D. Steel (2017). Current controversies in values and science. Taylor & Francis. Gundersen, T. (2018). Scientists as experts: A distinct role? Studies in History and Philosophy of Science Part A 69, 52–59.
Gundersen, T. (2020). Value-free yet policy-relevant? the normative views of climate scientists and their bearing on philosophy. Perspectives on Science 28(1), 89–118.
Hansson, S. O. (2007a). Values in pure and applied science. Foundations of Science 12 (3), 257–268.
Hansson, S. O. (2007b). What is technological science? Studies in History and Philosophy of Science Part A 38(3), 523–527.
Hansson, S. O. (2010). Changing the scientific corpus. In O. Erik and E. Sebastian (Eds.), Belief revision meets philosophy of science, pp. 43–58. Springer.
Hansson, S. O. (2013). What is technological knowledge? In I.-B. Skogh and M. J. D. Vries (Eds.), Technology teachers as researchers. Philosophical and Empirical Technology Education Studies in the Swedish TUFF Research School, pp. 15–31. Brill Sense.
Hansson, S. O. (2014). How context dependent is scientific knowledge? In Epistemology, Context, and Formalism, pp. 127–140. Springer.
Hansson, S. O. (2017). How values can influence science without threatening its integrity. In Logic, methodology and philosophy of science Proceedings of the 15th International Congress, pp. 207–221.
Hansson, S. O. (2018). Politique du risque et intégrité de la science. pp. 57–86. Presses universitaires de Franche-Comté.
Hansson, S. O. (2020a). Social constructionism and climate science denial. European Journal for Philosophy of Science 10(3), 1–27.
Hansson, S. O. (2020b). Values in pharmacology. In Uncertainty in Pharmacology, pp. 375–396. Springer.
Hicks, D. J. (2014). A new direction for science and values. Synthese 191 (14), 3271–3295. Holman, B. and T. Wilholt (2022). The new demarcation problem. Studies in history and philosophy of science 91, 211–220.
Idel’čik, I. E. (1966). Handbook of hydraulic resistance: coefficients of local resistance and of friction. Israel Program for Scientific Translations.
Intemann, K. (2015). Distinguishing between legitimate and illegitimate values in climate modeling. European Journal for Philosophy of Science 5 (2), 217–232.
Jeffrey, R. C. (1956). Valuation and acceptance of scientific hypotheses. Philosophy of Science 23(3), 237–246.
John, S. (2012). Mind the gap. review of heather douglas: Science, policy and the value-free ideal. Studies in History and Philosophy of Science Part A 43 (1), 218 – 220.
Kitcher, P. (2011). Philosophy inside out. Metaphilosophy 42 (3), 248–260.
Kourany, J. A. (2010). Philosophy of Science after Feminism. Oxford University Press.
Kuhn, T. S. (1977). Objectivity, value judgement, and theory choices. In The Essential Tension— Selected Studies in Scientific Tradition and Change. Chicago and London: The University of Chicago Press.
Lacey, H. (2017). Distinguishing between cognitive and social values. See Elliott and Steel (2017), pp. 15–30.
Levi, I. (1960). Must the scientist make value judgments? The Journal of Philosophy 57(11), 345–357.
Longino, H. (1990). Science as Social Knowledge. Values and Objectivity in Scientific Inquiry. Princeton: Princeton University Press.
McMullin, E. (1982). Values in science. In PSA: Proceedings of the biennial meeting of the philosophy of science association, Volume 1982, pp. 3–28. Philosophy of Science Association.
Möller, N. and S. O. Hansson (2008). Principles of engineering safety: Risk and uncertainty reduction. Reliability Engineering & System Safety 93 (6), 798–805.
Morgan, G. J. (2010). Heather douglas: Is science value-free?(science, policy, and the value-free ideal). Science and Engineering Ethics 16 (2), 423–426.
Niiniluoto, I. (1993). The aim and structure of applied research. Erkenntnis 38 (1), 1–21. Parascandola, M. (2010). Epistemic risk: empirical science and the fear of being wrong. Law, Probability & Risk 9(3-4), 201–214.
Polanyi, M. (1962/2000). The republic of science: Its political and economic theory. Minerva 1 (38), 1–21.
Reiss, J. and J. Sprenger (2020). Scientific Objectivity. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2020 ed.). Metaphysics Research Lab, Stanford University. Rudner, R. (1953). The scientist qua scientist makes value judgments. Philosophy of science 20 (1), 1–6.
Ruphy, S. (2006). “empiricism all the way down”: a defense of the value-neutrality of science in response to helen longino’s contextual empiricism. Perspectives on Science 14(2), 189–214.
Steel, D., C. Gonnerman, and M. O’Rourke (2017). Scientists’ attitudes on science and values: Case studies and survey methods in philosophy of science. Studies in History and Philosophy of Science Part A 63, 22–30.
UN (1992, 3-14 June). Annex 1. rio declaration on environment and development.
Wagenknecht, S., N. J. Nersessian, and H. Andersen (2015). Empirical philosophy of science: Introducing qualitative methods into philosophy of science. In Empirical Philosophy of Science, pp. 1–10. Springer.

Téléchargements

Publiée

2023-12-15

Comment citer

Stamenkovic, Philippe. 2023. « Remarks on Hansson’s Model of Value-Dependent Scientific Corpus ». Lato Sensu: Revue De La Société De Philosophie Des Sciences 10 (1):39-62. https://doi.org/10.20416/LSRSPS.V10I1.4.