Still Another Anti-Molinist Argument

DANIEL RUBIO
Toronto Metropolitan University
Daniel.rubio@torontmu.ca

Abstract: Molinists offer a tempting bargain: accept divine middle knowledge, and reap solutions to a number of philosophical/theological problems. The prime benefit we are meant to reap from middle knowledge is a solution to the problem of freedom and providence. I argue that they cannot deliver. Even if we make metaphysical and semantic assumptions that have generally been considered friendly to Molinism, Molinism is in danger of undermining divine providence altogether. The spectre of this “collapse” persists despite Molinism-friendly assumptions and plagues the best Molinist theories defended in the literature.

Keywords: Molinism, Counterfactuals of Freedom, Providence, Divine Agency, Freedom

1. Introduction

Molinist philosophers and theologians claim to have a fruitful theory. If we accept the theory of divine “middle knowledge,” we can reconcile libertarian freedom, divine foreknowledge, and a robust theory of providence, perhaps finding tools to help analyze salvation, the problem of evil, and other salient theological notions along the way. A number of challenges have been raised against the coherence of Molinism, but most parties agree: if coherent, Molinism has much to offer contemporary philosophers of religion.

1 This paper is a descendant of one of the first papers I wrote while Dean’s student and was heavily inspired by his 2009 anti-molinist argument. Fittingly, his 2009 paper appeared in a volume in honor of Robert Adams. In addition to Dean, I owe special thanks to Robert and Marilyn Adams, Howard Robinson, Eddy Chen, and the rest of the Rutgers Center for Philosophy of Religion crew for helpful conversations and feedback. I have also received helpful comments and discussion from Andrew Chignell, Lara Buchak, Ryan Darr, Alexander Englert, Elisabeth Li, and the rest of the Princeton Project in Philosophy and Religion Working Group. A referee for this journal also provided detailed and helpful comments.
I challenge this consensus. Let Molinism be fully coherent. Consequences of key elements of the view undermine important work to which its partisans put it. My focus here will be on the Molinist concordia of freedom and providence. The debate around it has produced a vast and complicated literature, which in the name of brevity I will not survey.²

My objection, in its simplest form, is an instance of an old anti-molinist argument: the argument from unacceptable possibilities. In schematic form: molinism entails that possibly P. The possibility of P is unacceptable. Therefore molinism is unacceptable. Plantinga (1974) considers an early version of this argument when addressing the question: what if the molinist conditionals entailed that God could create only very bad worlds? Molinists have been content to answer: God would sit by Godself, alone in perfection. Another instance appears in Zimmerman’s (2009) voodoo-worlds objection: what if the molinist conditionals gave God so much control, we could not meaningfully count as free? Here, I ask: what if the molinist conditionals entailed that God only has very few worlds available for creation, or very little variety among them? I argue (a) that molinism raises this possibility (a situation I call providential collapse), and (b) that the possibility of providential collapse undermines divine aseity. An unacceptable result.

A note on technical terminology. I will generally use uppercase greek letters such as Γ, Δ, and Υ as sets of propositions. I will generally use the subscript ⊩ to denote the deductive closure of a set of propositions (so if Γ stands for a set of propositions, Γ ⊩ will stand for its deductive closure), and lowercase greek letters such as φ, ψ, χ, and ρ as propositional variables. When it makes sense contextually, I will put an uppercase Greek letter in a propositional variable position where technically the conjunction of the elements of the set should go.

2. Molinism and the Problem of Providence

Strong views of providence and libertarian views of human freedom appear to conflict. According to traditional doctrines of providence, God has foreknowledge of the world’s history, and control over that history’s development. According to Libertarian theories of free will, true freedom is incompatible with any form of determinism. Thus, we get a prima facie puzzle: how is it that God can exercise control over the development of a world’s history containing free agents, if any

determinism nullifies the agent’s freedom?

Much ink has been spilt on this problem. Starting with the 16th century Jesuit theologian Luis de Molina, Molinism has emerged as one of the main contenders for a solution. Molina’s main idea: if God knew what free agents would do in various circumstances, God could arrange for the circumstances to obtain in which the free agents would do as God wills them to. Thus, by giving God a suite of conditionals—known in the literature as counterfactuals of freedom—to guide God’s act of creation, Molina hoped to defuse the tension. The term “counterfactuals of freedom,” while popular, is misleading as a description of the things the Molinist God learns. As Flint (1998) makes clear, they do not presuppose free agents, or even agents. The Molinist God needs providence over everything, not just the agents. I will refer to this group as “Molinist conditionals” throughout.

To fill out the picture, following Flint (1998) in presentation and terminology, we can think of God’s omniscience as unfolding in four “moments.” These are understood to represent the priority order of information as it is made available to God in creating the world. They are not temporal. We can divide these into pre-volitional and post-volitional moments, with the divine creative act occurring between moments two and three. And we can divide subjunctive Molinist conditionals into two classes: counterfactuals of divine freedom and counterfactuals of creaturely freedom.

The first moment of God’s knowledge we call God’s necessary knowledge, and it includes all necessary truths. These include most of the truths of math, logic, metaphysics, natural theology, and similar areas of knowledge. Their presence is uncontroversial.

The second moment, Molina’s key addition, brings the truth values of all creaturely Molinist conditionals. We will spend a fair amount of time investigating exactly which counterfactuals count as Molinist conditionals, but in general they are instances of the schema “if S were in C, S would A,” where S is an agent, C is some circumstance, and A is an action. This is, at best, a heuristic device. For present purposes, I will make no substantive assumptions about what these conditionals are like. I will not, for instance, assume that their antecedents imply that determinism is false, or indeed that their antecedents must contain much more information than the tautology. Later, I will introduce and defend some minimal assumptions about them.

Molinist conditionals are also contingent—the first contingent truths on the scene. And their truth values are in no way dependent on God. God does not select the truth values, and can do nothing to change them. They simply present themselves to God, bringing information about the actual world. In the process,
they create a situation that has been noted by a number of philosophers: there are possible worlds which are ineligible for creation, and God gets no say which. Plantinga exploited it in his infamous Free Will Defense, and various Molinist solutions to other problems use it as well (e.g. Craig (1989) defending hell). It has also featured in various objections to Molinism, such as Robert Adams’s (1977) “grounding objection.” We will occasionally find it useful, following Plantinga, to refer to the worlds left after the Molinist conditionals have their say as “feasible” worlds.

God then combines the contingent information revealed in the second moment with the necessary truths to choose the truth values of the counterfactuals of divine freedom. We note the asymmetry here between divine and creaturely freedom. No mere set of conditionals can dictate what a God would do without that God’s say-so. Since choosing the true counterfactuals about divine actions is equivalent to choosing an actual world, God chooses the counterfactuals of divine freedom that result in actualizing the world. This marks the third moment, and the first post-volitional one.

Finally, in the fourth moment, God gets the truth value of all other propositions (presumably by applying modus ponens to the appropriate counterfactual of divine freedom), in what has often been called God’s “free” knowledge.

So Molinism offers a concordia of divine providence and creaturely freedom. It does so by dividing God’s knowledge into four moments, and then carefully weaving them around the divine creative act. This way, prior to creation, God has enough contingent information to place agents in circumstances where they will do as God wants. The promise: accept Molinist conditionals, known to God before creating, which narrow the field of possible worlds it is feasible for God to create, accept that these have their truth or falsity independent of and not subject to veto by God, and solve the freedom/foreknowledge/providence puzzle. But can Molinism deliver? As we shall see, if the (deductive closure of the set of) Molinist conditionals that present themselves to God in the second moment is (or could have been) too rich or too anemic, then it cannot.

3 It is once more worth noting that I will assume the entire third moment to happen synchronically. God makes a single decision, and that decision carries out all of its implications at once. Views on which this moment unfolds in “stages”—such as that of Zimmerman (2009)—introduce complications that we need not consider while getting the basic argument on the table. Climenhaga and Rubio (2022) map out the explanatory structure of theories like this.
3. The Self-Undermining Problem

I argue that Molinism leads (or may lead) to a providential collapse. God has no control over which Molinist conditionals obtain. And God has no control over the logical consequences of the set of such counterfactuals. These two facts combine with a few assumptions about those counterfactuals and the logic governing them to create situations that are at best uncomfortable for a robust theory of providence. Although I will often speak of “collapse” as if it were a single state of affairs, it is really a family of states.

Before we say what a collapse is, it is important to say what collapse is not. Nothing in my argument requires or assumes that divine freedom requires libertarian leeway. Leibniz, with his view that God had exactly one option to create, does not fall prey to my objection.\footnote{Thank you to Robert Adams for pressing me on this point.} What I object to is the overly narrow winnowing—prior to and independent of any divine volitions—of the possible worlds God is able to actualize.\footnote{In particular, I make no assumptions about the content of divine desires or the rational structure of the creation decision. See Rubio (2018), Tucker (2020), and Johnston (2019) for further discussion.} In contrast to traditional accounts of creation and providence, Molinism introduces a new modal distinction: possible worlds that are nevertheless uncreatable. My objection only has traction with this distinction in place, for I charge the Molinist with reducing the space of available worlds in objectionable ways.

The most extreme bad case for Molinism I will call total agential collapse. Let Υ be a set of propositions describing what each actual agent actually does. If, for each member ψ of Υ, there is a Molinist conditional $\phi \rightarrow \psi$ such that the set of Molinist conditionals imply ϕ, total collapse has occurred. In this scenario, when the Molinist conditionals present themselves to God, they also tell God which creatures will do what and when. And since God had no say over the counterfactuals, God gets no say over which creatures there are or what they do. This more or less eliminates providence.

A second noteworthy collapse I will call single-career collapse. Single-career collapse happens when, for each agent whom God could have created, there is a true conditional (career conditional) $\phi \rightarrow \psi$ where ϕ states that the agent is created and ψ gives the agent’s entire career. This is not quite so bad as total collapse, since God still gets a little bit of say over which agents are created. But since agents inevitably interact over the course of a career, there will be certain (a great many) combinations of agents which will come as a package deal. For
instance, if Smith’s career-conditional includes “has a conversation with Jones,” then Jones’s career conditional must include “has a conversation with Smith,” and God creates Smith iff God creates Jones. We don’t need to map how involved these entailment networks between the consequents of career conditionals can become to see that this really isn’t much providence.⁶

These are particularly sharp types of collapse. But we can think of collapse in a more general sort of way. A respectable theory of providence should get God lots of choices amongst worlds to create, and lots of variety amongst those choices (optimally all of them, but Molinists hope to trade a few worlds for a resolution to the various theological problems). God could have many choices with virtually no variety. For instance, if all God gets to pick is the number of stars, the number of particles, and the number of elements, God gets a vast array of choices (infinitely many), but very little variety. Or God could have a great variety amongst the choices, but altogether too few. For instance, if God gets only a very small subset of the possible worlds to choose from, none of which have any of the same people, things, or events in them, God gets lots of variety, but a very small number. A robust providence requires both. It is important to note that even infinitely many worlds can count as “very few choices.” What we care about when we speak of number of choices is not the cardinality of the set of feasible worlds, but the proportion of logical space that it occupies.⁷

This thought can be made precise with a little geometry. Suppose in the first moment there are continuum many possibilities.⁸ Then we can represent logical space on a cartesian plane, with each point as a world and distance between points representing distance between worlds.⁹

If figure 1 represents God’s options before the second moment, figures 2-4 represent ways for God’s options to be after the second moment. The shaded points represent worlds that God can choose amongst.

⁶ Some readers may worry here about the option of God not creating at all. We will discuss that further later.

⁷ This presupposes that measure theory can sensibly be applied to the plurality of worlds. We will pretend here that it can.

⁸ This is almost certainly false, but for reasons that will become apparent trying to use a plausible assumption would make our precise version too complicated to be useful.

⁹ Distance depends on similarity, so that if we have a set of worlds all of which are distant from each other we have great variety amongst the members of that set. We might even give a formal measure of the variety within a set of worlds by taking the measure of its convex hull within the plane, but for our present purposes we do not need a formal measure of variety.
In figure 2, we have a decent number of worlds and a decent amount of variety between them.

In figure 3, we have a lot of worlds, but little variety. This could well be what a total collapse looks like: a tight cluster of worlds, where all God gets to choose are minor details like the number of stars.

In figure 4, we have a lot of variety, but very few worlds. The options are spread out, but because of the career networks amongst the possible creatures, there aren’t many choices.

We could perhaps model the robustness of providence as having a strictly increasing relationship with the proportion of shaded worlds and their distribution, but we don’t need to get too technical here to see the basic point: the fewer and more tightly grouped the worlds God chooses between, the less providence God has. Even when there are infinitely many worlds to choose
amongst.

We can now move on to the argument. Throughout, I will make a few modeling assumptions. I will assume that with each proposition, we associate a set of worlds. In so doing, I make no substantive claim about the metaphysics of propositions (or of worlds). I merely claim: for each proposition, there exists a set\(^{10}\) of worlds at which that proposition is true. We can thus model the interaction of propositions under various operations (negation, conjunction, disjunction, consequence) by the interaction of their associated sets under various operations (complement, intersection, union, subset). To be a little more accurate, we create a Boolean algebra with the singletons of the worlds as atoms. Amongst the significant consequences of this model: almost any proposition we care about can be represented as a conjunction, a disjunction, or a material conditional.

Suppose \(\Gamma \) is a sufficiently rich set of counterfactuals. Then \(\Gamma \) will entail lots of non-counterfactual information. For instance, because the counterfactual implies the material conditional, for every counterfactual \(\varphi \Box \rightarrow \psi \) in \(\Gamma \), there is the corresponding proposition \(\neg \varphi \lor \psi \) in its deductive closure \(\Gamma^w \). Combinations of these sentences may yield even further inferences. For instance, if \(\varphi \lor \chi \& \psi \lor \neg \chi \) are in \(\Gamma^w \) as well, then \(\psi \) will be in \(\Gamma^w \).\(^{11}\) Thus, starting with the right three counterfactuals—\(\neg \varphi \Box \rightarrow \psi \), \(\neg \varphi \Box \rightarrow \chi \), and \(\chi \Box \rightarrow \psi \)—we can infer that \(\psi \). Suppose we add a further counterfactual to our set, \(\psi \Box \rightarrow \Delta \). Then, from these four, we can infer \(\Delta \). Or, in the case of God, who may not require inferences: knowing these four entails knowing \(\Delta \) as well.

Variations on this theme give us many ways to extract categorical information from sets of conditionals. Any member with a \(\Gamma^w \)-necessary antecedent gives us its consequent, and some members with \(\Gamma^w \)-contingent antecedents will get their antecedent from other entailment relations between the conditionals, and thus their consequents. For example, if \(\varphi_1 \Box \rightarrow \psi_1 \) and \(\varphi_2 \Box \rightarrow \psi_2 \) are in \(\Gamma \) and \(\psi_1 \models \varphi_2 \), then if \(\varphi_1 \) is in \(\Gamma^w \), so is \(\psi_2 \).

To fill in the example, let \(\varphi_1 \) be “Curly is offered a $10,000 bribe,” \(\psi_1 \) be “Curly reports the bribe to the police captain,” \(\varphi_2 \) be “The police captain hears of a bribe offered to Curly,” and \(\psi_2 \) be “She arrests the briber,” and let it be \(\Gamma \)-necessary that Curly is offered a $10,000 bribe. Then “the police captain arrests the briber” is in \(\Gamma^w \). So, when the Molinist God learns which Molinist conditionals are true, the Molinist God also acquires categorical information about the actual world—in this

\(^{10}\) More precisely: a class. But having acknowledged the distinction between sets and proper classes, and the various cardinality worries usually associated with the need to make it, I propose to ignore it.

\(^{11}\) We leave the proof as an exercise to the reader.
STILL ANOTHER ANTI-MOLINIST ARGUMENT

case, that the police captain will arrest the briber (and all of its implications).

At this point, some readers will hold up a stop sign. “Steady on,” they object. “Simply supposing that Curley must be offered the bribe is unfair. Why couldn’t God just create nothing, leaving a world with nothing but God enjoying unperturbed bliss? Isn’t that always an option? The short answer is: no. Given the right set of conditionals, God’s creatorly hand is forced.

Perhaps the Molinist conditionals include some with very “thin” antecedents, such as “if God exists, Eve would eat the apple.” Since God does exist, Eve must eat the apple, and so there had better be an Eve and an apple. Molinists may have to say that all conditionals with such “thin” antecedents are false, or only true as part of God’s free knowledge. We will discuss this issue further in later sections. But on our minimal assumptions so far, God could be stuck creating. An important question will be whether there is a principled way for the Molinist to avoid something like this happening. With that clarification, we move on to the argument. Let the following assumptions hold:

PLENITUDE: For any agent S, Circumstance C, and Action A such that it is possible that S perform A in C, Γ (the set of conditionals God knows prevolitionally) includes either the proposition “if S were in C, then S would freely perform A,” or the proposition “if S were in C, then S would not freely perform A,”12

LOGIC: Stalnaker’s System (C2)13 is the correct logic for counterfactuals.14

A few words in defense of these assumptions. I think something like plenitude is required for the Molinist theory to get off the ground. There has to be some guarantee that God has sufficient and sufficiently rich Molinist conditionals to sensibly guide the world. It is also useful to the Molinist against the “might argument” of Hasker (1989), or the general skepticism about counterfactuals defended by Hájek (2013).

I will say more about logic in § 3.2, but I will note that C2 (and its fragment VC) either are (or are fragments of) the most popular conditional logics, and a weakening of either would put the Molinist at odds with natural language

12 We will later explore the consequences of weakening this assumption. Note now that it amounts to an application of Conditional Excluded Middle to Molinist conditionals.

13 See Priest (2008) and Nute and Cross (2001) for thorough discussion of major counterfactual logics. We provide a complete axiomatization of C2 in §3.2.

14 Later, I will explore the argument with weaker systems.
semanticists and a great many other philosophical users of conditionals.

We can now show a collapse on these minimal assumptions. Of course, all this shows here is that no Molinist should accept both assumptions. But it will be good to illustrate the basic mechanics of the argument on a stripped-down theory. Later, we will explore whether theories that Molinists have accepted or would be prone to accept escape the argument.

Take any necessary proposition \(\top \). Then, by an application of conditional excluded middle, for every agent \(S \) and action \(A \), there is a true Molinist conditional, either “if \(S \) were in \(\top \), \(S \) would \(A \)” or “if \(S \) were in \(\top \), \(S \) would not \(A \).”

We can think of \(\top \) as a description of the most general circumstance (one that obtains whenever \(\top \) is the case). But since \(\Gamma \) entails “\(S \) is in \(\top \) if \(S \) exists,” \(\Gamma \) will entail “\(S \) performs \(A \) if \(S \) exists,” and thus the only way for God to prevent \(S \)’s performance of \(A \) is to fail to create \(S \). This gets us the single-career collapse. If we are a bit less picky about forcing our conditionals to conform to the heuristic schema and allow true instances of \(\top \rightarrow \phi \), where \(\phi \) says that an agent performs an action, we can get total collapse. Depending on how general we allow the antecedents to get, we can get other less severe collapses.

The Molinist has two possible responses to this argument. She can adopt the way of constraint, or the way of restriction. The way of constraint constrains the eligible substitution instances for \(C \) in the schema for Molinist conditionals. Thus, although there may be true conditionals with very general antecedents, they are not the ones that present themselves to God in the second moment of creation. God does not know them prevolitionally. This leaves too few conditionals in \(\Gamma \) with \(\Gamma \)-necessary antecedents for the collapse to occur. Think of it as a way of constraining plenitude. By contrast, the way of restriction allows any substitution for \(C \), but restricts the background counterfactual logic to the point where there are not enough conditionals in \(\Gamma \) with \(\Gamma \)-necessary antecedents for the collapse to occur. Since defenders of this route are freewheeling about which propositions can go into the antecedents of their conditionals, I will often refer to them as freewheeling Molinists.\(^\text{15}\)

\(^{15}\) The way of restriction was suggested to me in personal correspondence by Alvin Plantinga.
that has been studied independently from the collapse argument. However, the literature is not full of precise accounts of how the constraints go. We will examine the most popular and detailed option: that advanced by Thomas Flint. After arguing that Flint’s theory is in danger of leaving too little room for providence, I will leave it to the Molinist to give a precise and well-motivated constraint that blocks the argument, but I doubt it’s a task that can be done. Before diving into the details, it is good to flag and then set aside a very broad concern for the way of constraint. Molinist conditionals aren’t the only conditionals in town. Any adequate Molinist theory will give an account of why certain conditionals present themselves to God in the second moment, while others do not. Proponents of the way of constraint face a special case of this problem; for while perhaps freewheeling Molinists can say something about individual essences or possible persons (assuming there are such things), followers of the way of constraint need to say something more specific: they need to explain why certain conditionals about the actions of people are true in the second moment, while others are not. In the interest of pursuing the current line of reasoning, I will pretend that this question has been satisfactorily answered, although I am by no means confident that it can. The best Molinist theory of the antecedents for their conditionals has been set forward by Thomas Flint.

Flint calls for circumstances to be “complete,” which he roughly defines as including all simultaneous and prior causal activity by all agents in the world. At first glance, Flint’s restriction looks quite promising—after all, many of the eligible instances of C will be information-rich. Exactly the kind of proposition that is unlikely to be Γ_n-necessary.

It is tempting to modify Flint’s condition to require circumstances to contain, rather than just an account of agential activity, a complete world-history from the moment of creation to the moment before the agent acts. This includes more information by letting in the non-agential influences. But this still leaves out important information. By failing to include facts simultaneous to S performing A, we risk leaving out important influences. Instead, we should begin with the complete world-history up to t, and from there “remove” S performing A in such a way that our remaining proposition is non-entailing, but information-rich. In order to do that, it will be helpful to talk of worlds as containing initial segments. So I will briefly introduce the notion of an ordered world. The rough idea: we treat

16 The best of these efforts can be found in Zimmerman (2009), Flint (1998), Craig (1990), Flint and Freddoso (1983), and Wierenga (1989).
worlds as sets of propositions, and then order the sets. We want an order where
the propositions describing the world’s history are indexed in the same order as
the appearance of their truthmakers (or the occurrence of the events they are
about), propositions about large scale features of the world come at the beginning
of the order, and various boolean propositions are placed in their natural spots.

Let an ordered world be a set of ordered pairs obtained by taking a world and
indexing its members with the ordinals by way of the wo-procedure:

WO-I. The necessary proposition(s) comes before any contingent proposition.
WO-II. Propositions about the laws, theory of chance, and other large scale
structural features of the world are ordered prior to all propositions about
the world’s history.
WO-III. Propositions that obtain at a given time in the world’s history are
indexed in their temporal order (so if the world has a beginning, the
propositions describing it are the first historical propositions, and are all
mapped to the same index; if it has no beginning, then every historical
proposition is after the propositions about large scale features, in order of
appearance).
WO-IV. Any proposition entailed by propositions indexed prior to or at α,
but not by propositions only indexed prior to α (so that propositions
indexed at α are essential to their deduction), is indexed at α.
WO-V. Contingent Molinist Conditionals go last.

A brief justification for WO-I-V. WO-I places the necessary proposition first, ensuring
that all worlds trivially share an initial segment. Since this plays no important role
in what follows, it is primarily an aesthetic/convenient choice. So long as the
placement of the necessary proposition(s) is uniform, it shouldn’t matter. WO-II
places ‘large scale’ features of the world next. WO-III sets out the world’s history in
order. WO-IV ensures that the set of propositions sharing an index is deductively
closed (crucial for our purposes), takes care of all boolean propositions and the
like, and prevents any propositions from slipping into an index where they
shouldn’t be.18 We put the Molinist conditionals last for purely pragmatic reasons,
because we do not want them embedded in their own antecedents. This will make
some propositions multiply indexed (disjunctions will accompany all disjuncts),

17 Those with metaphysical scruples may apply their favorite paraphrase, so that we represent
worlds as sets of propositions and so on.
18 For instance, if it didn’t have the second clause, all propositions prior to an index would be
placed at that index.
but that is the price of deductive closure. We will call the ordered world produced by taking a world \(w \) and applying the WO-procedure to it \(\sigma(w) \).

With ordered worlds in hand, we can speak sensibly of initial segments. Let \(S \) be an initial segment of \(\sigma(w) \) iff:

i. \(S \) is a subset of \(\sigma(w) \)

ii. \(x \in S \) implies that \(\forall y \in \sigma(w) \) if the index of \(y \) ≤ the index of \(x \), then \(y \in S \)

Now let \(\Delta \) be an initial segment of \(w \) iff:

i. \(\Delta \) is a subset of \(w \)

ii. There exists some initial segment \(S \) of the ordered world \(\sigma(w) \) such that the members of \(\Delta \) are all and only the propositions contained in the members of \(S \)

We next lay down the following stipulations about these world-histories. Our final goal is a rigorous definition of circumstances.

Closure: Circumstances relative to an action are all described by a set of propositions that is closed under strict implication.

Richness: The descriptions of circumstances relative to an action are derived from initial segments of worlds by removing the desired consequent (proposition saying that the agent performed the action) and anything that entails it.

Non- triviality: The descriptions of circumstances relative to an action must contain more than tautologous information.

In order to complete the story, we must specify the kind of contraction that takes us from an initial world-segment to a circumstance. Fortunately, the kinematics of changing logically closed sets of propositions have been studied by proponents of AGM. Unfortunately, their efforts have shown that contraction is not a simple matter.

19 Note here that this does not rule out collapse by fiat. \(\Gamma_n \)-necessary propositions need not be tautologous.

20 For further discussion of these issues I refer the reader to Alchourrón and Makinson (1982), Alchourrón et al. (1985), and Levi (2004).
AGM is a formal system for modeling changes in logically closed belief states, using the resources of mathematical logic and set theory. And while our interest is not epistemological, we can borrow some of AGM’s formal machinery. Specifically, we are interested in contraction: deleting information from a logically closed set of sentences in such a way that obtains a new logically closed set of sentences that does not include the deleted information.21

More precisely, letting Σ and Λ be sets of propositions, we are interested in the remainder set of Σ without Λ (hereafter $\Sigma \perp \Lambda$). We can think of a remainder set as the options for “removing” Λ from Σ while staying closed under implication. It is, therefore, a set of subsets of Σ. A set of propositions Π is a member of $\Sigma \perp \Lambda$ iff:

i. $\Pi \subseteq \Sigma$

ii. $\Pi \models \Lambda = \emptyset$

iii. There is no set of propositions Δ such that $\Pi \cup \Delta \subseteq \Sigma$ and $\Delta \models \Lambda = \emptyset$.

Informally, condition 1 requires Π to be a subset of Σ, condition 2 requires that Π not imply any proposition in Λ, and condition 3 is a maximality condition: there can’t be some other subset of Σ which strictly includes Π without implying Λ.

Generally, there are multiple members of a remainder set, because there are many maximal ways of removing a proposition from one set while staying closed under implication. A quick example: we can remove a conjunction by removing either of its conjuncts. With this in hand, we can now give a more precise definition of Flint’s Molinist conditionals.

MODIFIED FLINT’S CONDITIONALS: $\phi \Box \rightarrow \psi$ is a Molinist conditional iff there exists some pair of sets of proposition $\{\Sigma, \Lambda\}$ such that:

- **FC-I.** Σ is an initial segment of a world;
- **FC-II.** Λ describes a creaturely agent’s free action;
- **FC-III.** ϕ is the result of conjoining all the members of some Δ such that Δ is a member of $\Sigma \perp \Lambda$;
- **FC-IV.** ψ is the conjunction of all the members of Λ; and
- **FC-V.** $\phi \neq \top$.

As given, **MODIFIED FLINT’S CONDITIONALS** formalizes the idea that circumstances are obtained from initial segments of worlds by deleting an agent’s free action, but retaining as much information about that world as can be done without entailing

21 My presentation here follows Alchourrón and Makinson (1982).
the deleted action. We note that FC-I-IV imply RICHNESS and CLOSURE, but do not
imply NON-TRIVIALITY, which must be stipulated in FC-V.

We can now evaluate the collapse argument on the assumption that MODIFIED
FLINT’S CONDITIONALS both exclusively and exhaustively characterizes the
conditionals God knows prevolitionally. First, we note that MODIFIED FLINT’S
CONDITIONALS itself is Γₜ-necessary. Even if the eligibility condition on the
antecedents for Molinist conditionals is contingent, as soon as the conditionals
present themselves, the eligibility condition is fixed. Thus, from God’s necessary
knowledge of logical space and God’s knowledge of Molinist conditionals as
described in MODIFIED FLINT’S CONDITIONALS, we can, for every world, collect the
(provolitionally true) Molinist conditionals whose antecedents were obtained from
an initial segment of that world. Call these sets CFA sets. CFA sets are unique up
to sameness of creaturely actions: if two worlds differ in some initial segment
containing a creaturely action, they will differ in their CFA sets. And if God’s only
options to create are identical in which creaturely acts they contain, we are already
in a total agential collapse.

With CFA sets in hand, we can begin. Because we are using a background
conditional logic at least as strong as VC (see § 3.2 for discussion of weaker
systems), we accept the inference known as centering:

CENTERING: (φ & ψ) ⊨ φ ☐ → ψ

And centering gives a unique status to the actual world, which we can exploit.
Recall that absent some special condition or construction, remainder sets have
multiple members. Nothing in our construction guarantees that, if both φ₁ and φ₂
are in a member of Σ⊥Λ and φ₁ ☐ → ψ is true, then φ₂ ☐ → ψ is. But centering
guarantees that for the actual world, it does hold.22 And so the actual CFA has a
special property: CFA-COMPLETENESS. We define this as follows:

CFA-COMPLETENESS: w has a complete CFA-set iff every conditional obtained
from an initial segment of w via the FC-procedure whose consequent obtains
at w is in the CFA set for w

22 Proof: Let φ₁……..φₙ be the members of a remainder set from an actual initial segment. They
are implied by a true proposition, so true. There are two options for ψ. It is either actually true or
actually false. If it is actually false, then the conditional φ₁ ☐ → ψ is false. But by assumption,
φ₁ ☐ → ψ is true. So ψ must be actually true. But if ψ is actually true and φₙ is actually true, then
by centering φₙ ☐ → ψ is actually true.
CENTERING makes sure the actual world has a complete CFA set. This means that, any time we have an actual action, we get a true Molinist conditional with an actual antecedent. By assumption, all of the conditionals in that CFA-set satisfy the FC-criteria, and so are known prevolitionally. But there is no guarantee that otherworldly actions accompanied by otherworldly-true antecedents will have a true Molinist conditional. For there is no guarantee that counterfactuals whose antecedent and consequent are true at other worlds will in fact be true. Indeed, if we think of counterfactuals from the perspective of Lewisian system of spheres models, we should expect very few worlds to have all (or even most) of the same counterfactuals true at them as are true at the actual world. Which counterfactuals are true at a world depends on which sphere a world falls in (and on which world is at the center of the system of spheres), and the more distant we go from actuality, the more variance there is in relative closeness between worlds.

It seems possible that the counterfactuals of freedom be so arranged that there is only one complete CFA set. No principle of logic disallows it. So, although we cannot outright prove whether Flint’s constraint implies or makes it possible that there be a collapse without a model, we do have some positive reason to think it possible which we would not have if Molinism were false. But giving a model that even begins to look satisfactory from a Molinist perspective would involve writing infinitely many infinitely long sentences. This is often the situation for hypotheses about the shape of the counterfactuals of freedom. Well known uses of Molinism, from Plantinga’s free will defense to Craig’s defense of hell, find themselves similarly situated. Molinism gives us reason to think them possible, while without Molinism their possibility seems dubious, but we have no rigorous proof of their possibility. Worlds that agree with the actual world as to which agents do what are the best candidates for having the complete CFA sets, but if those are God’s only options, then the only available worlds for creation are clustered in a tight sphere around the actual world, giving us a low variety collapse.

So, it appears that suitably regimented as MODIFIED FLINT’S CONDITIONALS, Flint’s constraint gives us reason to think that a collapse is possible in the same way it gives us reason to think other hypotheses about the shape of the counterfactuals of freedom are possible. And while the possibility of a collapse is not as bad as one guaranteed, it is still an unwelcome implication of the view. Molinism is meant to ensure providence, not give us reason to think it might be crippled altogether. Perhaps there is some alternative to these constraints which will guarantee non-collapse. In fact, I am certain an ad hoc one could be constructed. But they are the most popular and most intuitive, and so we will focus our attention on the Molinist’s other escape route: the Way of Restriction.
2.2 The Way of Restriction

The way of restriction looks to avoid collapse not merely by giving constraints on eligible antecedents for Molinist conditionals (an enterprise primed for charges of ad hocery, especially in light of Robert Adams’s (1977) grounding objection; bad enough that Molinist conditionals are ungrounded, but now which of them present themselves to God before God choose a world to actualize is extremely sensitive to the content of the antecedent), but by restricting the logic of counterfactuals to the point where the closure of Γ is not (or at least need not be) much more informative than Γ itself.

The way of restriction walks a delicate path. Part of the appeal of Molinism is the ability to go from some set of conditionals about who would do what and when to a bunch of categorical information about the world. Molinists who wish to take advantages of many of the theological projects Molinists tend to engage in as a primary selling point of the view must be careful to leave the logic of conditionals in good enough shape so as to be able to (potentially) extract information like “there is no feasible world in which every free agent does no evil,” (Plantinga’s Free Will Defense) or “in order to secure n heaven-bound agents, God had to create n hellbound ones” (Craig’s Molinist defense of hell). Thus, on pain of leaving God high and dry, Molinists must embrace certain richness constraints on the set of available conditionals together with their implications.

An additional factor besetting the way of restriction is the need to maintain a logic of counterfactuals that holds with ordinary usage. Molinist counterfactuals are not special beasts; their conditional is the conditional of ordinary language. Thus, any attempt to do away with theorems and inferences implicated in the collapse argument must answer to natural language semantics. If the best theory of counterfactuals endorses (say) C_2 or something stronger, so must the Molinist. Bearing these warnings in mind, we begin.

We are faced with a dizzying array of proposals for the semantics of counterfactuals. From Lewisian sphere models to Pearl-style causal modeling, an impressive box of mathematical tools has been brought to bear in the conditionals debates. Fortunately, many of these have been shown to be inter-translatable.23 Even attempting to summarize all of the options would take us far beyond the scope of this paper. Instead, I will provide axiomatizations of the logics in question, recognizing that most of the major semantics can be made to give rise to

23 The proofs can be found in Lewis (1981), Nute and Cross (2001), Marti and Pinosio (2014), Marti and Pinosio (2016).
them by appropriate restrictions on their models.24

We begin with a language. Our syntax is that of the propositional calculus, supplemented by the counterfactual operator $\square \rightarrow$. The rules for well-formed formulae (wffs) are as usual, with the addition that interposing $\square \rightarrow$ between any wffs makes a further wff.25 A set of formulae is a conditional logic just in case it includes all tautologies and is closed under modus ponens.26

Stalnaker’s C2, which we have so far treated as our background logic, is the smallest counterfactual logic closed under the following rules:

\begin{align*}
\text{RCEC: } & \varphi \leftrightarrow \psi \vdash (\chi \square \rightarrow \varphi) \leftrightarrow (\chi \square \rightarrow \psi) \\
\text{RCK: } & (\varphi_1 \& \ldots \& \varphi_n) \rightarrow \psi \vdash ((\chi \square \rightarrow \varphi_1) \& \ldots \& (\chi \square \rightarrow \varphi_n)) \rightarrow (\chi \square \rightarrow \psi), \ n \geq 0
\end{align*}

and containing all instances of the following:

\begin{align*}
\text{ID: } & \varphi \square \rightarrow \varphi \\
\text{MP: } & (\varphi \square \rightarrow \psi) \rightarrow (\varphi \rightarrow \psi) \\
\text{MOD: } & (\neg \varphi \square \rightarrow \varphi) \rightarrow (\psi \rightarrow \varphi) \\
\text{CSO: } & ((\varphi \square \rightarrow \psi) \& (\psi \square \rightarrow \varphi)) \rightarrow ((\varphi \square \rightarrow \chi) \leftrightarrow (\psi \square \rightarrow \chi)) \\
\text{CV: } & ((\varphi \square \rightarrow \psi) \& \neg(\varphi \square \rightarrow \neg \chi)) \rightarrow ((\varphi \& \chi) \square \rightarrow \psi) \\
\text{CEM: } & (\varphi \square \rightarrow \psi) \lor (\varphi \square \rightarrow \neg \psi)
\end{align*}

As perceptive readers will note, CEM played a key role in the initial collapse argument. Thus, a natural move for those Molinists opposed to any restriction on C-eligibility is to deny its validity.27 Those who do so are in good company: W.V.O Quine, David Lewis, Jonathan Bennett, and a majority of contemporary philosophers reject it.28

But, setting aside the general arguments in its favor, CEM is not without its charms for committed Molinists. First of all, it guarantees PLENITUDE, a non-trivial task in even slight weakenings of C2 (such as our next logic, VC). Secondly, it

24 For a detailed presentation of most of the major options, and the axiomatizations of various logics from which the following paragraphs are drawn, see Nute and Cross (2001).
25 This allows for arbitrary nesting of counterfactuals.
26 see Priest (2008) for a conditional logic that does not include MP.
27 Indeed, this was Alvin Plantinga’s first response to the collapse argument in personal correspondence.
28 But see Stalnaker (1980), Williams (2010), and Swanson (2012) for a spirited defense.
prevents Hasker’s “Might Argument” from getting off the ground.29 And despite
the generally dismissive tone with which some have greeted Hasker’s argument,
its defeat is work that must be done somehow. Third, counterexamples to CEM are
often precisely pairs of the type of counterfactual Molinists need to come out true:
counterfactuals in which the antecedent describes an indeterministic process while
the consequents specify outcomes of that process.30
The first natural weakening of C2 is David Lewis’s VC. Its axiomatization is just
like that of C2, but we replace CEM with CENTERING.

\begin{equation*}
\text{CENTERING: } (\varphi \land \psi) \rightarrow (\varphi \Box \rightarrow \psi)
\end{equation*}

Unfortunately for the freewheeling Molinist, this weakening does not get her out
of the problem. CENTERING ensures that there are just enough counterfactuals for
the collapse to occur. For any counterfactual of the form “if S were in T, S would
freely A” with a true consequent will be true. As inadequate compensation (and
for more or less the same reason), VC still allows something close enough to
plenitude to obtain, for \(\Gamma \) will at least be rich enough to allow God to create the
actual world. Molinists who embrace Flint’s restriction will recognize CENTERING as
the axiom deployed against them. And so they may see good reason to combine
the way of constraint with the way of restriction, adopting both Flint’s rule for
antecedents and a logic no stronger than VW (the result of dropping CENTERING
from VC).

Just as there are general arguments for and against CEM, there are general
arguments for and against CENTERING. Most of the arguments in favor of it are
based on the preferred semantics (in combination with pragmatic defenses against
alleged counterexamples). The rough idea behind much recent work on
counterfactuals has been: see what changes need to be made to actuality to make
the antecedent true, and then see if the consequent is true too (this may be seen as
an ontic version of the Ramsey Test). In cases where the antecedent is actually true,
the answer to the question, “what must change to make the antecedent true?” is
“nothing.”31 Thus, we can see that centering is motivated by the “minimal change”
conception of the truth conditions for counterfactuals. Unsurprisingly, then, all of
the major work in this tradition is friendly to it.

29 See Hasker (1989), Hasker (2012), Flint (2012), and Mares and Perszyk (2012) for further
discussion.

30 For example, the pair “if a fair coin were flipped, it would land heads” and “if a fair coin were
flipped, it would land tails” are commonly taken to both be false.

31 The canonical defense can be found in Lewis (1973) and Stalnaker (1968).
Nevertheless, there are several classes of common counterexamples. The first we might call “irrelevance” examples like (1).

(1) If London were the capitol of the UK, then Washington would be the capitol of the US.

In these sorts of cases, a conditional is sandwiched between an arbitrary pair of truths.

The second, we might call “counterevidential” examples like (2), supposing that John is in general a bad party guest and that the party went well.

(2) If John were to attend the party, it would be a success.

In these cases, the antecedent counts as evidence against the consequent, but not decisively. And finally, we have indeterministic examples like (3):

(3) If atom R1 were in a sample of radium-226, it would decay after 1600 years.

It has been suggested that these sorts of (probabilistic) cases render not only centering, but most counterfactuals false.

In response to these examples, I can do no better (and see no reason why better need be done) than Lewis. Counterfactuals with (known) true antecedents are odd to assert, because the counterfactual construction carries a presupposition of a false (or at least not known) antecedent, and because the conversational purpose in most contexts would be better served by asserting the conjunction than by asserting the counterfactual (in fact, failure to do so violates the maxim of quality). Thus, we are right to be suspicious of (1), (2), and (3). But since they are known to be flawed assertions, we cannot take intuitions as to their truth value all that seriously.

Not only so, but it is unclear that merely retreating from VC to VW will solve all the problems. Walters (2016) has argued that most extant attempts to do so either fail to solve the various counterexamples that motivate dropping CENTERING or end up dispensing with some other valued principle of counterfactual logic. Space does not permit a thorough discussion of Walters’s arguments here, but combined with Lewis’s point about the infelicity of asserting counterfactuals with known

32 We can see this objection crop up in Bennett (1974).
33 Bennett (2003) favors these sorts of examples.
34 Hájek (2013) is the primary prosecutor; see Lewis (1986) for an attempted fix.
antecedents, they make for a compelling defense.

Not only so, but the Molinist may get less than she hopes for by weakening the logic. By dropping centering from VC, we obtain VW. This frees Flint-style Molinists from a logic that guarantees the possibility of a collapse. But even so, there will be many true instances of CENTERING in the Molinist’s intended model. Applying FC already filters out many of the sorts of counterfactual used as counterexamples to CENTERING. When we have a counterfactual of the sort Flint is interested in, it is fairly intuitive that it is an instance of CENTERING. Thus, it is unclear how much the Molinist gains by falling back to VW. Even though CENTERING is not a theorem of VW, neither is its negation; there is nothing VW-inconsistent about a strongly centered model. So, it does not free her from the possibility of a collapse. It merely frees her from the possibility of collapse being guaranteed by the background counterfactual logic. Her own richness requirements may well do her in.

Furthermore, the retreat to VW brings a new danger onto the horizon. In logics as strong as VC, plenitude or something near enough is a logical truth. God at least gets enough counterfactuals to make the actual world. But there are VW models in which this does not happen; for instance, models in which the only true counterfactuals are those in which the antecedent entails the consequent. In fact, the crucial step in the attack van Inwagen (1997) launches on Molinism is the step from VC to VW. The VW-embracing Molinist owes us a story about why Γ is rich enough to fulfill its role in the theory of providence. And in doing so, she must not recreate the resources needed for a collapse argument.

Logics weaker than VW have nothing new to give the Molinist, and only make the richness issue more pressing. They also bring her into direct conflict with the philosophical mainstream, where the debates over counterfactuals almost uniformly presuppose stronger logics. So we shall pay them no heed.

Instead, we shall consider a broad issue (often hinted at) facing the way of restriction. As I have argued, Γ (and its accompanying logic) can fail to live up to its theoretical role in two ways. It can be so powerful that God gets little to no choice as to which world is actual, or it can be so anemic that God gets little to no help in selecting a world. Call a Molinist theory that avoids these two extremes Goldilocks Molinism. We are faced with a question: should Molinism entail Goldilocks Molinism? In our survey of the most common/popular counterfactual logics, we have seen that—by the lights of the logic alone—Molinism does not

35 Pollock’s SS, Lewis’s VC, Stalnaker’s C2, and the strict conditional logics of Gillies and von Fintel are the main contenders. See von Fintel (2001) and Gillies (2007) for details on the latter.
entail Goldilocks Molinism. In system VC and stronger, there is a possibility of collapse. In system VW and weaker, there is the possibility of an anemic set of counterfactuals being of little to no help to divine providence. The only difference between the two is centering.

So, suppose Molinism does not entail Goldilocks Molinism. Is this a problem? Molinists have shown a general willingness to accept prima facie undesirable modal consequences of their view, such as the possibility that once the Molinist conditionals have been set, there is no feasible world that God finds worth creating. But the problems here are worse than that. Unlike the all-terrible situation, the collapse and anemic situations are providence-depriving. It is the difference between selecting amongst a large variety of bad options, and selecting amongst very few or very homogenous options. Collapse is a structural flaw in the menu of feasible worlds, not a substantive flaw in the worlds on the menu.

We have already seen how the collapse is providence-depriving. To see how the anemic case is, too, consider the (extreme) VW model in which all counterfactuals are false (except those required by ID and by various strict conditionals). When God is considering whether to put someone in some situation, God has no idea what that person will do: it is both false that she would A, and false that she would not A. And without that knowledge, God cannot use Middle Knowledge to guide the world in the way that Molinism is meant to preserve.

So, whether God gets to exercise providential control depends on how the Molinist conditionals turn out. This runs head on into the doctrine of divine aseity. As traditionally understood, divine aseity is the ultimate declaration of metaphysical independence. It requires that God not depend on anything beyond Godself for the possession of God’s “important” (for some suitably spelled out notion of importance) properties. On the uncontroversial assumption that providence is an important divine attribute, we get a conflict: unless one of the right sets of Molinist conditionals are the true ones, God cannot exercise providence. But the Molinist conditionals are independent of God. And so whether God exercises providence depends on something beyond divine control. This is unpalatable.

As a final throw, the Molinist may once again appeal to the possibility of God choosing to create nothing to try and defuse the worry. As long as not creating is always an option, then God at least has one choice: to create, or not to create. The Way of Constraint, executed competently, will dissolve the objection from thin

36 Rusavuk (Forthcoming) offers a similar line of attack on Molinism, arguing that Molinists deprive God of aseity by subjecting God to moral luck.

37 Credit to a referee for this journal for pressing this line of response.
antecedents I raised to the possibility of non-creation in the most basic type of collapse arguments. So, the Molinist will not have to pay a heavy price to maintain at least one providential decision. If, in addition, the world in which God and nothing else exists is a good option for God, perhaps the loss of all other providence isn’t bad enough to threaten aseity. This addition, unfortunately, is neither cheap nor obvious. Traditional theism (and the decree of Vatican I) holds that creation is contingent. God could always have failed to create. It is much less dogmatic about the explanation for why that is the case.

One suggestion, sometimes called *manifestationism*, is certainly friendly to this thought. According to Manifestationists, God creates as a way of manifesting the divine glory. But God’s reasons for manifesting glory are non-coercive. In particular, contemporary manifestationists (e.g. Johnston (2019), O’Conner (2022)) tend also to be anti-meliorists, who hold that nothing God created could add to the value of the world, given that God is already in it. So, God could always have refrained from creating without thereby forfeiting a worldly value-add. This naturally supports the idea that a world with God alone is a pretty good option—maybe just as good as any of the other options.

But anti-meliorist manifestationism is not the only way to defend the contingency of creation. Another line of thought, developed by Alexander Pruss ((2016), (2022)), gives incomparability center-stage. According to Pruss, the kinds of values (many of them artistic) exemplified by the world with God alone create incomparabilities with the kinds of values that worlds with creations in them would exemplify. And incomparabilities lead to permissive choice situations. But it is consistent with the letter (if not quite the spirit, although Pruss’s (2022) suggestion that God might not create because any creation would be a misleading manifestation of God points to a disappointing array of options) of Pruss’s defense of divine creative freedom that God find the creationless option a disappointment. While unsurpassable in a technical sense, God may have dispreferred the lonely world to many possible worlds (indeed, at worlds where God creates God does prefer creation to loneliness, and these are most of the possible worlds). Here the Molinist disrupts a standard story wherein God surveys the options, forms preferences (guided but not coerced by reason) over them, and then makes a creative decision. In between God forming preferences and God performing a

38 It is standard among analytic philosophers of religion to think of these options as worlds or world-seeds (starts to indeterministic worlds), they could just as easily be whatever representational widget opponents of the world-actualization model of creation such as Page (2022) prefer. All talk of worlds, with care and proper bookkeeping, in this debate can hopefully be translated into talk of whatever those widgets end up being.
creative act, God gets some news about what creation is feasible. And for all the
incomparabilist has to say, the news might be bad. While a disappointing option is
not quite the same as a bad option (psychology need not be axiology, although in
God’s case it would be most fitting if the two moved together), it’s not a good
shield for a Molinist defending a single choice—create or not—as providence
enough.

A third way to defend the contingency of creation is positively consistent with
the lonely world being a mediocre option. Work by Daniel Rubio ((2018), (2023)) in
defense of No-Norms Theism suggests that creation is contingent because no
norms govern divine action, and so God could well have chosen to create nothing
regardless of where that world stands on the axiological ladder. While it is not
plausible that the lonely world be a lousy option—it beats any creation that would
be a negative contribution to the world’s value—the fact that it’s missing all of the
valuable things that are not God suggests room for improvement.

3. Conclusion

The Molinist sets out a grandiose project: to reconcile a strong doctrine of divine
providence with a strong theory of human freedom. In order to do so, she
introduces Molinist conditionals: true counterfactuals about what possible agents
would do in possible situations. These counterfactuals are not only contingent, but
are beyond divine control. God gets no say in which are true and which are not.
Further, they are known to God prior to God’s choice of a world to actualize. The
promise is that, in doing so, they allow God (within their own constraints) to
exercise providential control over who does what by only putting agents in
situations where they would do as God wills they do.

But his control comes at a price. Rather than giving God all of logical space from
which to choose an actual world, Molinists “filter” the possible worlds through the
Molinist conditionals (and their logical consequences), so that it is only feasible for
God to actualize worlds that survive the filter. However, as we have seen, things
are not so tidy. The logical consequences of a set of counterfactuals can be quite
broad. Very rich sets of counterfactuals imply a good deal about which world is
actual. In fact, using the standard background counterfactual logics and making
some minimal assumptions about what the set of Molinist conditionals is like, we
have seen evidence that they can pin down one or only a very few candidates for

39 Although it is an ancient position, common among the medieval, this name is due to Reilly (2023).
40 Rubio (Forthcoming) makes this case in detail.
the actual world. Moreover, they can dictate some of the very facts that they were
supposed to allow God to choose: facts about who does what.

In the face of this problem, the Molinist has two options: the way of constraint—
setting out constraints on what kinds of information the antecedents of Molinist
conditionals can contain- and the way of restriction—restricting the background
logic of counterfactuals so that the original set has very few extra consequences. I
have argued that both of these options face problems. The way of constraint is
extremely tricky to implement successfully. I have shown how the best proposed
restrictions in the literature do not rule out the possibility of a collapse. I conjecture
that in logics as strong as VC, a route to collapse will present itself. The way of
restriction introduces a new way for Molinism to fail to deliver on its promises: in
VW and weaker logics, there are models in which the set of Molinist conditionals
does not contain enough information to be of use to God in guiding the world.

Thus, amongst possible sets of Molinist conditionals, there is a zone of sets that
are strong enough to cause a collapse, a zone of sets that are too weak to be usable,
and a zone of sets that are just right. Molinists have yet to offer a guarantee that the
set God gets will be in the third zone (and many contemporary variants of
Molinism entail that it is not). And without one, their theory undermines the
doctrine of divine aseity. Rather than God’s exercise of providence being wholly
dependent on God, it depends on whether God is dealt a favorable hand. So the
Molinist concordia fails. Molina’s theory does not deliver.

Bibliography

Adams, R. M. 1977. “Middle Knowledge and the Problem of Evil.” American

Alchorrourn, C. E. and Makinson, D. 1982. “On the logic of theory change:
Contraction functions and their associated revision functions.” Theoria, 48(1):14–

change: Partial meet contraction and revision functions.” Journal of Symbolic

Bennett, J. 1974. “Counterfactuals and Possible Worlds.” Canadian Journal of

Hájek, A. (Ms). “Most Counterfactuals are False.”

