

Sagittal split osteotomy with or without third molar removal: A prospective cohort study on inferior alveolar nerve disturbances

Authors:

Craeynest A MD, DDS^{1,*}
Blok J MD, DDS¹
Maleux O MD, DDS¹
Politis C MD, DDS¹
Gorlé D MD, DDS¹
Berquin K MD, DDS¹
Snel R MD, DDS¹
Kalantary S MD, DDS¹
Ongena S MD, DDS¹
Bral A MD, DDS¹
Lenaerts V MD, DDS¹

Affiliations:

¹ Department of Oral and Maxillofacial Surgery, VITAZ, Moerlandstraat 1, 9100, Sint-Niklaas, Belgium

*Corresponding author: Dr A. Craeynest, Department of Oral and Maxillofacial Surgery, VITAZ, Moerlandstraat 1, 9100, Sint-Niklaas, Belgium, alec_craeynest@hotmail.com, ORCID ID: 0009-0005-9857-7565

2

[Nemesis] Titre de l'article (PUL-En-tête paire)

25

Disclaimer: the views expressed in the submitted article are our own and not an official position of the institution or funder.

26

27

28

29

Abstract

30 **Objective:** The aim of this study is to evaluate whether the simultaneous removal
31 of mandibular third molars during sagittal split osteotomy (SSO) influences the
32 incidence and severity of postoperative neurosensory disturbances of the inferior
33 alveolar nerve (IAN).

34 **Material and methods:** In this prospective cohort study, 172 SSO procedures
35 were analyzed at the Department of Oral and Maxillofacial Surgery, AZ Vitaz
36 Hospital, Belgium. Patients were divided into two groups: those with no third molars
37 present (Group I, $n = 117$) and those undergoing simultaneous third molar removal
38 during SSO (Group II, $n = 55$). Neurosensory function was evaluated at 1 day, 1
39 week, 3 weeks and 6 weeks postoperatively using objective (Medical Research
40 Counsel (MRC) scale, two-point discrimination, static light touch, sharp/blunt
41 discrimination) and subjective measures. Logistic regression and ANCOVA were
42 used to assess associations between third molar status and neurosensory outcomes.

43
44 **Results:** In both groups, high sensory recovery rates were achieved six weeks after
45 surgery: 91% and 95%, respectively. There were no statistically significant
46 differences between the groups in terms of the duration required to reach functional
47 sensory recovery ($p = .650$), final MRC score distribution ($p = .702$), two-point
48 discrimination scores, or static light touch or sharp/blunt discrimination. Entrapment
49 of the IAN occurred more frequently in patients with third molars (69.1% vs.
50 53.8%), but this difference was not statistically significant ($p = 0.058$). Entrapment
51 and patient age were significant predictors of neurosensory complaints. No adverse
52 outcomes occurred in either group.

53
54 **Conclusions:** Simultaneously removing mandibular third molars during SSO does
55 not significantly impact postoperative neurosensory outcomes. Age and inferior
56 alveolar nerve (IAN) entrapment are more critical risk factors for altered sensation.
57 These findings support the safety of removing third molars at the same time as
58 orthognathic surgery.

59
60 **Keywords:** sagittal split osteotomy, third molars, inferior alveolar nerve,
61 neurosensory disturbance, orthognathic surgery
62
63

64

65

Introduction

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

The optimal timing of third molar (M3) removal in relation to orthognathic surgery is still a topic of debate. Some authors recommend extracting the third molars (M3s) six to nine months prior to sagittal split osteotomy (SSO), as the presence of M3s can increase the risk of unfavorable fractures and cause technical difficulties. In contrast, simultaneous removal can reduce the need for multiple surgeries and facilitate better exposure of impacted molars, which could potentially reduce overall treatment time [1].

A meta-analysis found no significant association between the presence of M3s and complications such as nerve entrapment in the proximal segment, infection, the need to remove a plate, or 'bad' splits [2, 3].

A common complication of SSO is neurosensory disturbance of the inferior alveolar nerve (IAN) following surgery. Nerve positioning in the proximal segment, which is observed in 10–60% of cases, often necessitates manipulation, thereby increasing the risk of nerve injury. While some literature suggests that the presence of M3s correlates with higher rates of proximal segment attachment, paradoxically, lower rates of neurosensory deficit have been reported when M3s are present and removed simultaneously. These findings conflict with our clinical experience [3-9].

This study aimed to investigate the incidence and potential risk factors of IAN injury following SSO, paying particular attention to the role of the presence of M3s at the time of surgery. The study also aimed to compare these findings with those reported in the existing literature [10]. Our hypothesis is as follows: the presence of impacted mandibular M3s during SSO leads more frequently to the need for dissection or bony release of the IAN resulting in a higher incidence of postoperative hypo- or dysesthesia in the IAN region.

93

Materials and methods

94

Study Design and Setting

95

96

97

98

A prospective cohort study was conducted at the Department of Oral and Maxillo-facial Surgery at AZ Nikolaas Hospital in Sint-Niklaas, Belgium. Ethical approval was obtained from the hospital's Institutional Review Board.

99

Participants

100 All patients undergoing orthognathic surgery between December 2023 and April
101 2024 were screened. The inclusion criteria comprised patients undergoing bilateral
102 SSO, either as a standalone procedure or as part of bimaxillary surgery. Exclusion
103 criteria included:
104 - Pre-existing IAN damage,
105 - History of previous SSO or mandibular fracture,
106 - Removal of mandibular M3s within six months of surgery,
107 - Failure to attend follow-up assessments.

108

Groups

109 The participants were divided into two groups:

- 110 • Group I: patients undergoing SSO without M3s present (either
111 congenitally absent or removed at least six months prior to surgery).
- 112 • Group II: patients undergoing SSO with the simultaneous removal of
113 mandibular M3s.

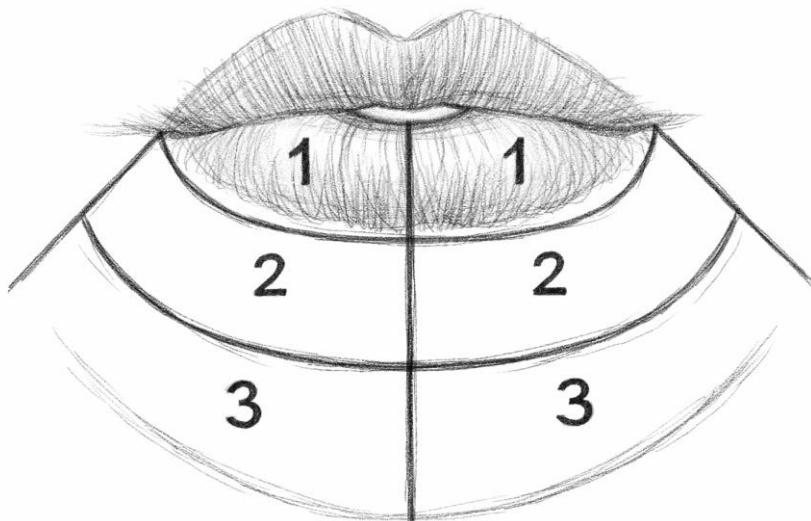
114

Surgical procedure

115 All surgeries were performed by one of six experienced oral and maxillofacial
116 surgeons, with residents providing assistance. The Hunsuck modification of the
117 Obwegeser–Dal Pont technique was performed under general anesthesia with
118 nasotracheal intubation. A horizontal osteotomy was performed above the lingula,
119 and a vertical incision was made between the first and second molars using a
120 Lindemann burr. Mandibular splitting was then achieved using chisels. If present,
121 the M3 was removed after the osteotomy was completed. Fixation was performed
122 using one miniplate and four monocortical screws.

123

Primary outcome variables


124 The primary endpoint was the duration required to achieve objective functional
125 sensory recovery of the IAN, as assessed at postoperative days 1, 1 week, 3 weeks
126 and 6 weeks.

127

128 Objective evaluations were therefore conducted in three mental nerve territories: the
129 vermillion, labial and mental skin areas (Figure 1).

130

131

132
133
134

Fig. 1. Tested areas of mental nerve distribution: 1, vermillion; 2, labial skin; 3, mental skin [10]

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Three standardised tests were employed (Table 1):

- **Two-point discrimination (2-PD):** A blunt graduated calliper was incrementally opened until consistent discrimination ($\geq 80\%$) of two points was achieved. The measured distance at each location was subtracted from the corresponding baseline (preoperative) value. If the postoperative value was lower than the preoperative measurement, the resulting difference was adjusted to 0 mm to avoid negative values in the dataset.
- **Static light touch detection (LT):** Conducted using a 3.22 Semmes-Weinstein monofilament applied perpendicular to the skin.
- **Sharp/Blunt Discrimination (SB):** Random application of sharp and blunt stimuli requiring $\geq 80\%$ correct identification.

157

Table 1. Objective neurosensory tests and assessment details

Test	Purpose	Instrument	Assessment criteria
Two-Point Discrimination (2-PD)	Assess spatial tactile acuity	Blunt graduated caliper	Consistent discrimination of two points ($\geq 80\%$)
Static Light Touch (LT)	Detect light cutaneous touch	Semmes-Weinstein 3.22 monofilament	Positive response 4 out of 5 times ($\geq 80\%$)
Sharp/Blunt Discrimination (SB)	Distinguish nociceptive vs blunt stimulus	Sharp and blunt mechanical probe	Correct identification 4 out of 5 times ($\geq 80\%$)
Functional Sensory Recovery (FSR)	Global neurosensory function	Composite (2-PD, LT, SB + MRC scale)	Defined as MRC score $\geq S3$

158

159 Patients underwent testing with their eyes closed and their lips relaxed. The
 160 examiners were blinded to the previous results and group allocation. A global neuro-
 161 sensory recovery score was calculated from these tests based on the British Medical
 162 Research Council (MRC) grading system. Functional sensory recovery (FSR) was
 163 defined as an MRC score of at least S3 (Table 2).

164

165

Table 2. Objective neurosensory tests and assessment details

Score	Parameter	FSR
S0	No sensation	No
S1	Pain sensation (deep)	No
S2	Pain sensation (superficial)	No
S2+	Pain and touch sensation with hyperesthesia	No
S3	As S2+, without hyperesthesia, with 2-PD $> 15\text{mm}$	Yes
S3+	As S3, 2-PD 7-15mm	Yes
S4	As S3+, 2-PD 2-6mm	Yes

166

167 Abbreviations: FSR (functional sensory recovery); 2-PD (2-point discrimination)

168

169 As patients with established functional sensory recovery were not routinely
 170 monitored beyond this point, the last available measurement for each patient
 171 regarding 2-PD, LSS, SB, subjective assessment and the MRC scale was used to
 172 evaluate the final 2-PD scores and static light touch (LT) or sharp/blunt (SB)
 173 discrimination at the six-week time point.

174

175

176

177

Secondary outcome variables

178

Secondary outcome measures included recording subjective, patient-reported neurosensory complaints at each postoperative time point (day 1, week 1, week 3 and week 6). In addition, secondary surgical variables were recorded:

181

- The presence of an unfavourable fracture during SSO
- The degree of IAN entrapment and manipulation at the time of splitting
- The total time required to achieve the mandibular split.

184

185

186

Additional data collected included patient age and gender; magnitude of mandibular movement; and surgeon experience (categorized as staff or resident).

187

Statistical analysis

188

189

190

191

192

193

The data were collected in a Microsoft Excel database (Microsoft Inc., Redmond, WA, USA). The data were analyzed using JASP software (version 0.19.1.0, JASP Team, Amsterdam, the Netherlands). As the assumptions for independent sample t-tests were violated (Shapiro–Wilk normality test or Brown–Forsythe test for equality of variances), Mann–Whitney U tests were used to compare continuous variables describing both groups.

194

195

196

197

198

Categorical variables were compared using chi-square tests. Logistic regression and ANCOVA models were employed to evaluate the associations between the presence of M3s, neurosensory outcomes and the following covariates: age, sex, magnitude of mandibular movement, surgical duration, surgeon experience and IAN entrapment. Statistical significance was set at $p < 0.05$.

199

Results

200

201

202

A total of 172 SSOs were included: 117 procedures were performed without M3s present (Group I), and 55 procedures involved the concurrent removal of M3s (Group II).

203

204

205

206

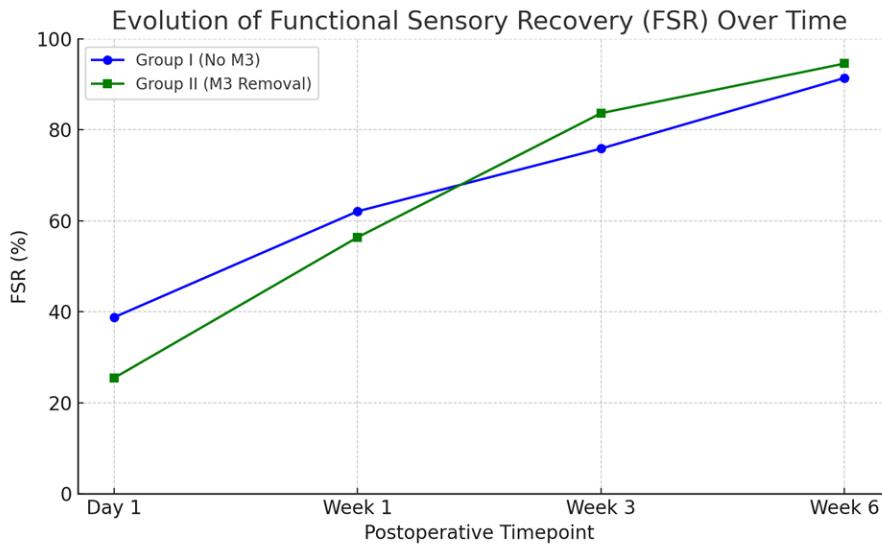
207

208

The mean patient age was significantly higher in Group I (22.5 ± 9.3 years) than in Group II (15.9 ± 1.7 years; $p < 0.001$). The gender distribution and surgical time were similar between groups (Group I = 12.0 ± 5.3 , Group II = 12.0 ± 6.0 , $p = .991$). The magnitude of mandibular movement was slightly higher in Group II, but this difference was not statistically significant ($p = .163$).

209

210


211

212

Functional sensory recovery

213
214
215
216

Functional sensory recovery (FSR; MRC \geq S3) was assessed at four timepoints after surgery: day 1, week 1, week 3 and week 6. The rate of FSR increased progressively over time in both groups (Figure 2).

217

Fig. 2. Evolution of functional sensory recovery (FSR) over time in Group I and Group II.

218

219

220

In Group I (no M3s removal; n = 116), 45 patients (39%) had achieved FSR by day 1, rising to 72 patients (62%) by week 1, 88 patients (76%) by week 3 and 106 patients (91%) by week 6.

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

In Group II (M3s removal; n = 55), 14 patients (25%) achieved FSR by day 1, rising to 31 patients (56%) by week 1, 46 patients (84%) by week 3, and 52 patients (95%) by week 6. No statistically significant differences between the groups were observed at any timepoint ($p > 0.05$) (Table 3).

238

Table 3. Functional sensory recovery (FSR) over time

Timepoint	Group I (No M3s, n=116)	Group II (M3s Removal, n=55)
Day 1	39% (45/116)	25% (14/55)
Week 1	62% (72/116)	56% (31/55)
Week 3	76% (88/116)	84% (46/55)
Week 6	91% (106/116)	95% (52/55)

239
240
241
242
243

Analysis of the time taken to achieve functional sensory recovery, as measured by FSR = MRC \geq S3, showed no significant difference between the two groups ($p = .650$). Most patients in both groups achieved an MRC grade of 3 or higher by the final follow-up.

244

Covariate analysis

245
246
247
248

Several patient-related and surgical covariates were included in a multivariate analysis to assess potential confounding variables influencing neurosensory outcomes (Table 4):

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

- **Gender:** No meaningful association with neurosensory recovery was found ($p = .973$)
- **Age:** A minimal, statistically non-significant effect was demonstrated ($p = .372$)
- **Magnitude of advancement/setback:** This variable approached statistical significance ($p = 0.105$), suggesting a potential trend towards influencing sensory recovery, though this was not definitive
- **Osteotomy duration:** No statistically significant association was found with recovery outcome ($p = .432$)
- **IAN entrapment:** Although a negative effect on recovery was observed, it was not statistically significant ($p = 0.103$); however, the trend aligns with clinical expectations
- **Operator:** (resident or staff): showed no statistically significant association with recovery outcome ($p = 0.707$).

264
265
266
267
268
269
270
271
272

These results suggest that none of the evaluated covariates had a statistically significant impact on the primary outcome of functional sensory recovery. This supports the robustness of the group comparisons.

273
274**Table 4. Multivariate analysis of covariates on functional sensory recovery (FSR)**

Covariate	Effects on FSR	p-value
Gender	No meaningful association	0.973
Age	Minimal, not significant	0.372
Magnitude of advancement/setback	Trend toward significance	0.105
Osteotomy duration	Not significant	0.432
IAN entrapment	Negative trend, not significant	0.103
Operator (Resident vs Faculty)	Not significant	0.707

275

276

Two-Point discrimination (2-PD)

277

278

279

280

281

The mean 2-PD scores at six weeks were comparable between the two groups across all areas of the mental nerve distribution that were measured.

ANCOVA analysis revealed that the presence of M3s had no significant effect on the vermillion, labial skin or mental skin areas ($p = .823, .231$ and $.284$, respectively).

282

283

Static light touch (LT) and sharp/blunt discrimination (SB)

284

285

286

287

288

289

No significant differences were observed between groups for static light touch (LT) or sharp/blunt (SB) discrimination at six weeks. Logistic regression models adjusted for age, gender, duration, operator status, IAN entrapment and advancement showed no significant effect of third molar status on LT (vermillion $p = .367$; labial skin $p = .803$; mental skin $p = .858$) or SB (vermillion $p = .219$; labial skin $p = .335$; mental skin $p = .510$).

290

IAN entrapment

291

292

293

294

295

Although IAN entrapment occurred more frequently in procedures involving M3s (69.1%) than in those without (53.8%), this trend did not reach statistical significance ($p = .058$). Nevertheless, logistic regression analysis showed that IAN entrapment was a significant predictor of lower MRC scores after six weeks ($p < 0.001$).

296

297

298

299

300

301

Subjective neurosensory complaints

302

Six weeks after surgery, 'normal sensation' was reported by 36.4% of patients in Group I versus 34.5% in Group II. Non-disturbing paresthesia was reported by 28.2% and 27.3% of patients in Groups I and II, respectively, while disturbing complaints were reported by 35.5% and 38.2% of patients in Groups I and II, respectively. There was no significant difference in the distribution of subjective complaints between the two groups ($p = .116$), although an increased age and IAN entrapment were associated with poorer subjective outcomes.

303

304

305

306

307

308

309

Bad splits

310

No unfavorable intraoperative splits ('bad splits') were observed in either group.

311

Discussion

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

Unlike previous studies, including that of Doucet et al., our study found no statistically significant benefit in reducing IAN disturbance after SSO from simultaneous M3s removal. Comparable recovery rates were observed using both objective and subjective measures, including 2-PD, LT, SB and FSR, between patients who had M3s removed during SSO and those who did not [10].

Interestingly, although IAN entrapment was more prevalent among those with M3s, it did not result in poorer functional outcomes. This finding supports the hypothesis that the presence of M3s alone does not determine neurosensory recovery. Instead, entrapment itself and age were found to be significant predictors of poorer outcomes, which is consistent with previous studies. Our criteria for identifying entrapped nerves were very low, which may partly explain the higher entrapment rates. Our observations suggest that nerve decompression procedures can be performed more easily in younger patients, probably because they have comparatively reduced cortical bone density and increased osseous pliability. These anatomical differences may account for improved surgical access and facilitate smoother release [3, 6, 8].

Importantly, there were no adverse splits in either group, which further supports the safety of the procedure for simultaneous M3s removal during SSO. This contradicts concerns reported in previous literature regarding technical complications associated with impacted third molars at the osteotomy site [1, 5].

Unlike Doucet et al., we did not observe any significant impact of mandibular movement size, surgical time or operator experience on recovery. Our findings suggest that M3s removal during SSO is not harmful. Both groups achieved similar recovery rates, which aligns with de Souza et al.'s meta-analysis [4, 9, 10].

One of the most notable findings of our study was the occurrence of persistent

340 subjective neurosensory complaints in patients who demonstrated normal results in
341 objective tests. This discrepancy between patient-reported symptoms and clinical
342 assessments is well documented in the literature [11-15]. For example, studies have
343 shown that the subjective experience of sensory deficits may not always align with
344 objective measurements, potentially due to psychological factors such as anxiety or
345 individual pain perception thresholds [11-15]. In the context of nerve repair, patients
346 have reported ongoing discomfort despite normal objective assessments, suggesting
347 that subjective evaluations capture aspects of sensory experience that are not fully
348 measured by clinical tests. These findings highlight the importance of incorporating
349 both subjective and objective assessments in postoperative evaluations to ensure a
350 comprehensive understanding of patient outcomes [11-15].

351
352 The simultaneous removal of M3s during SSO appears to be safe procedure, with no
353 statistically significant increase or decrease in IAN neurosensory disturbances.
354 However, IAN entrapment and patient age remain the strongest predictors of post-
355 operative neurosensory deficits.

356

357

358 • **Acknowledgements:** none
 359 • **Funding sources statement:** none
 360 • **Competing interests:** All authors declare no conflicts of interest
 361 • **Ethical approval:** Ethical approval was obtained from the AZ Nikolaas Hospi-
 362 tal in Sint-Niklaas, Belgium Institutional Review Board.
 363 • **Informed consent:** All patients provided written informed consent.

364

365 **Authors contribution:**

Author	Contributor role
Craeynest Alec	Conceptualization, Methodology, Data curation, Formal analysis, Statistics, Visualization, Writing original draft preparation, Writing review and editing
Blok Jorden	Data curation, Conceptualization
Maleux Olivia	Data curation
Politis Christophe	Data curation
Gorlé Dominique	Data curation
Berquin Kristof	Data curation
Snel Robin	Data curation, Conceptualization, Writing review and editing
Kalantary Sofia	Data curation

Ongena Sebastien	Data curation
Bral Alexander	Data curation
Lenaerts Vincent	Writing review and editing, Conceptualization, Supervision

366

367

References

368 1. Colelia G, Giudice A. The timing of third molar removal in patients undergoing a
 369 bilateral sagittal split osteotomy. *J Oral Maxillofac Surg* 2003;61:975.
 370 doi: 10.1016/s0278-2391(03)00505-6.

371 2. Abotaleb BM, Alkebsi K, Jiang N, Bi R, Liu Y, Telha W, Zhu S. Influence of
 372 inferior alveolar nerve exposure during sagittal split osteotomy on the rate and
 373 timing of baseline sensory recovery. *J Oral Maxillofac Surg* 2022;80:1893-1901.
 374 doi: 10.1016/j.joms.2022.08.022.

375 3. Al-Bishri A, Barghash Z, Rosenquist J, Sunzel B. Neurosensory disturbance after
 376 sagittal split and intraoral vertical ramus osteotomy: as reported in questionnaires
 377 and patients' records. *Int J Oral Maxillofac Surg* 2005;34:247-251. doi:
 378 10.1016/j.ijom.2004.06.009.

379 4. de Souza BB, da Silveira MLM, Dantas WRM, Almeida RAC, Germano AR.
 380 Does the presence of third molars during sagittal split mandibular ramus osteotomy
 381 favour complications? Systematic review and meta-analysis. *Int J Oral Maxillofac
 382 Surg* 2023;52:51-59. doi: 10.1016/j.ijom.2022.07.001.

383 5. Kriwalsky MS, Maurer P, Veras RB, Eckert AW, Schubert J. Risk factors for a
 384 bad split during sagittal split osteotomy. *Br J Oral Maxillofac Surg* 2008;46:177-
 385 179. doi: 10.1016/j.bjoms.2007.09.011.

386 6. Westermark A, Bystedt H, von Konow L. Inferior alveolar nerve function after
 387 sagittal split osteotomy of the mandible: correlation with degree of intraoperative
 388 nerve encounter and other variables in 496 operations. *Br J Oral Maxillofac Surg*
 389 1998;36:429-433. doi: 10.1016/s0266-4356(98)90458-2

390

391

392

393

394

395

396 7. Ylikontiola L, Kinnunen J, Oikarinen K. Factors affecting neurosensory
397 disturbance after mandibular bilateral sagittal split osteotomy. *J Oral Maxillofac*
398 *Surg* 2000;58:1234-1239; discussion 1239-1240. doi: 10.1053/joms.2000.16621.

399 8. Teerijoki-Oksa T, Jääskeläinen SK, Forssell K, Forssell H, Vähäalto K,
400 Tammisalo T, Virtanen A. Risk factors of nerve injury during mandibular sagittal
401 split osteotomy. *Int J Oral Maxillofac Surg* 2002;31:33-39.
402 doi: 10.1054/ijom.2001.0157.

403 9. Eshghpour M, Labafchi A, Samieirad S, Hosseini Abrishami M, Nodehi E,
404 Javan AR. Does the presence of impacted mandibular third molars increase the risk
405 of bad split incidence during bilateral sagittal split osteotomy? *World J Plast Surg*
406 2021;10:37-42. doi: 10.29252/wjps.10.1.37.

407 10. Doucet JC, Morrison AD, Davis BR, Robertson CG, Goodday R, Precious DS.
408 Concomitant removal of mandibular third molars during sagittal split osteotomy
409 minimizes neurosensory dysfunction. *J Oral Maxillofac Surg* 2012;70:2153-2163.
410 doi: 10.1016/j.joms.2011.08.029.

411 11. Susarla SM, Lam NP, Donoff RB, Kaban LB, Dodson TB. A comparison of
412 patient satisfaction and objective assessment of neurosensory function after
413 trigeminal nerve repair. *J Oral Maxillofac Surg* 2005;63:1138-1449. doi:
414 10.1016/j.joms.2005.04.021.

415 12. Lund HG, Rybarczyk BD, Perrin PB, Leszczyszyn D, Stepanski E. The
416 discrepancy between subjective and objective measures of sleep in older adults
417 receiving CBT for comorbid insomnia. *J Clin Psychol* 2013;69:1108-1120. doi:
418 10.1002/jclp.21938.

419 13. Shintani Y, Nakanishi T, Ueda M, Mizobata N, Toyo I, Fujita S. Comparison of
420 subjective and objective assessments of neurosensory function after lingual nerve
421 repair. *Med Princ Pract* 2019;28:231-235. doi: 10.1159/000497610.

422 14. Renton T, Yilmaz Z. Profiling of patients presenting with posttraumatic neuropathy
423 of the trigeminal nerve. *J Orofac Pain* 2011;25:333-44.

424 15. Bagheri SC, Meyer RA, Khan HA, Kuhmichel A, Steed MB. Retrospective review
425 of microsurgical repair of 222 lingual nerve injuries. *J Oral Maxillofac Surg*
426 2010;68:715-723. doi: 10.1016/j.joms.2009.09.111.

427

428

429

430

431

432

433

434