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1 – Introduction
In this paper we discuss the changing role of mathematics 
in science, as a way to discuss some methodological trends 
at work in big data science. Classically, any application of 
mathematical techniques requires a prior understanding of 
the phenomena and of the mutual relations among the rel-
evant data. Modern data analysis, on the other hand, does 
not require this. It rather asks mathematics to re-organize 
data in order to reveal possible patterns uniquely attached 
to the specific questions we may ask about the phenomena 
of interest. These patterns may or may not provide further 
understanding per se, but nevertheless provide an answer to 
these questions.

It is due to this diminished emphasis on understanding that 
we suggested in (Napoletani, Panza and Struppa 2011) that 
this approach should be denoted using  the label ‘agnostic 
science’, and we speak of ‘blind methods’ to denote individ-
ual instances of agnostic science. These methods usually rely 
only on large and diverse collections of data to answer ques-
tions about a phenomenon. As we will see in Section 3, a re-
liance on large amounts of data is, however, not sufficient in 
itself to make a method in data science blind.

The lack of understanding of phenomena in agnostic science 
makes the solution to any specific problem dependent on pat-
terns identified automatically through mathematical meth-
ods. At the same time, this approach calls for a different kind 
of understanding of what makes mathematical methods and 
tools well adapted to these tasks.

One current explanation of the power of data science is that 
it succeeds only because of the relevance and size of the data. 
Accordingly, the use  of mathematics in data science results 
in disconnected methods devoid of a common structure. This 
view would amount to a new Wignerian paradox of ‘unrea-
sonable effectiveness’, where such effectiveness is assigned to 

data and not to mathematics. This affirmation of the exclu-
sive primacy of data could be thought of as revenge of facts 
against their mathematization.

We reject such an answer as both immaterial and unsupport-
ed. In our rejection we do not argue that any exploration of 
data is doomed to fail without some previous understanding 
of the phenomenon. In other words, we do not oppose data 
science’s methods by defending the classical approach. Rath-
er, we observe the effectiveness of agnostic science in the ab-
sence of previous understanding, and consider what makes 
this possible.

Whilst we do not advance here any comprehensive reason 
for the effectiveness of data science, we observe that no ac-
count is possible unless we engage in a technical inquiry of 
how these algorithms work, and suggest a largely schematic 
account of their modus operandi. This account relies on the 
results of our previous work (Napoletani, Panza and Strup-
pa 2011, 2014, 2017), which we reorganize in a comprehen-
sive way. Furthermore, we identify a possible direction for 
future research and a promising perspective from which to 
approach the question.

In (Napoletani, Panza and Struppa 2011) we discussed the 
lack of understanding of the current big data methods. In do-
ing so, we did not borrow any general and univocal notion of 
understanding for an empirical (physical, biological, biomed-
ical, social, etc.) phenomenon. We simply observed that big 
data methods do not typically apply to the study of a certain 
empirical phenomenon, but rather they apply to a pair com-
prising a phenomenon and a question about it. 

Such methods are used when it is impossible to identify a 
small number of independent variables whose measurement 
suffices to describe the phenomenon and to answer the ques-
tion at hand.

We have argued that when this happens, no appropriate un-

In this paper we argue that data science is a coherent and novel approach to empirical problems that, in its 
most general form, does not build understanding about phenomena. Within the new type of mathematiza-
tion at work in data science, mathematical methods are not selected because of any relevance for a problem 
at hand; mathematical methods are applied to a specific problem only by `forcing’, i.e. on the basis of their 
ability to reorganize the data for further analysis and the intrinsic richness of their mathematical structure. 
In particular, we argue that deep learning neural networks are best understood within the context of for-
cing optimization methods. We finally explore the broader question of the appropriateness of data science 
methods in solving problems. We argue that this question should not be interpreted as a search for a cor-
respondence between phenomena and specific solutions found by data science methods; rather, it is the 
internal structure of data science methods that is open to precise forms of understanding.
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derstanding of the phenomenon is available, regardless of 
how one could conceive of the notion of understanding. This 
highlights the need to understand why (and when) mathe-
matics is successful in agnostic science, despite the blindness 
of its methods.

Let us now briefly describe the structure of the paper.

In Section 2, we discuss what we consider to be the basic trend 
of agnostic science: the ‘microarray paradigm’, as we called 
it in (Napoletani, Panza and Struppa 2011). This name was 
chosen to reflect the fact that this trend first became manifest 
in biology and biomedical sciences, though it is now perva-
sive in all data science. It is  characterized by the handling of 
large amounts of data, whose specific provenance is often un-
known, and whose modes of selection are often disconnected 
from any previous identification of a relevant structure in the 
phenomenon under observation. This feature is intended as 
the most notable virtue of the paradigm, since it allows inves-
tigation of the relevant phenomena, and specifically the data 
that have been gathered, without any previous hypothesis 
on possible correlations or causal relationships between the 
measured variables.

As already noted, there is an important distinction to be made 
between the use of powerful and often uncontrollable algo-
rithms on large amounts of data and real agnostic science. 
This distinction will be investigated in Section 3 with the help 
of a negative example, the PageRank algorithm used by Goo-
gle to weight web pages. The key point is that the lack of local 
control over the algorithm being used here, is not the same 
as a lack of understanding of the relevant phenomenon. The 
former is true of any algorithm working on large amounts of 
data, such as PageRank; the latter is, by definition,  the char-
acteristic feature of agnostic science.

In Section 4, we will go further in our analysis of agnostic sci-
ence, by investigating the relations between optimization and 
‘forcing’, a term we first introduced in this context in (Napo-
letani, Panza and Struppa 2011).  More specifically, by forcing 
we referred in (Napoletani, Panza and Struppa 2017) to the 
following methodological practice:

The use of specific mathematical techniques on the avail-
able data is not motivated by the understanding of the 
relevant phenomena, but by the ability of such tech-
niques to structure the data to be amenable to further 
analysis.

For example, we could impose continuity and smoothness on 
the data, even in the case of variables that can only take a dis-
crete value, just to be able to use derivatives and differential 
equations to analyze them. In cases such as these, we say that 
we are forcing mathematics over the available data.

In our terminology, optimization itself can be seen as a form 
of forcing when we carefully consider the ways it is used with-
in agnostic science.

By better describing this modus operandi in relation to deep 

learning techniques, we will also make clear that the reasons 
for the effectiveness of optimization cannot be regarded as 
the rationale for the success of agnostic science. In short, this 
is because optimization is itself a form of forcing and does 
not ensure that  the optimal solutions found by such meth-
ods correspond to anything of significance in the evolution or 
state of the phenomenon. Having made this clear, in Section  
5 we outline a tentative answer to the question of the success 
and the appropriateness of agnostic science, by indicating a 
possible direction for further reflection.

Our suggestion is based on the observation that blind meth-
ods can be regarded as complying with a simple and general 
prescription for the development of an algorithm, what we 
called ‘Brandt’s principle’ in (Napoletani, Panza and Struppa 
2017). We then discuss the way in which data science (Hastie, 
Tibshirani and Friedman 2016, Chapter 16) relies on entire 
families of methods (‘ensemble methods’), and we interpret 
this in light of the microarray paradigm, ultimately showing 
how this forces some implicit analytic constraints on blind 
methods. Finally, we propose that  these analytic constraints, 
when taken together with Brandt’s principle, exert strong re-
strictions on the relevant data sets that agnostic science can 
deal with.

2 – The Microarray Paradigm 
and Supervised Learning
We now describe in some detail a biological problem and a 
corresponding experimental technique. This provides a para-
digmatic example of a blind method, and illustrates the typi-
cal way agnostic science works.

One of the great advances in biology and medical practice has 
been the understanding of the relevance of genes in the de-
velopment of several diseases such as cancer. The impact of 
genetic information, as encompassed by DNA sequences, is 
primarily mediated in an organism by its expression through 
corresponding messenger RNA (mRNA) molecules. We know 
that the specific behavior of a cell largely depends on the ac-
tivity, concentration, and state of proteins in the cell, and the 
distribution of proteins is, in turn, influenced by the changes 
in levels of mRNA. This opens up the possibility of under-
standing diseases and their genetic basis through the analysis 
of mRNA molecules.

The mechanism that leads from a certain distribution of 
mRNA molecules to the manifestation of a certain disease 
is, however, rarely understood. In addition, it is also unclear 
which specific mRNA molecules are relevant in particular 
diseases. Biologists developed a technique, called ‘DNA mi-
croarray’, that can to some extent bypass this lack of under-
standing, and enable the identification of patterns within 
mRNA distributions, that may be markers for the presence 
of some diseases.

We first briefly describe  the experimental structure of the 
DNA microarray and the way it can be used in diagnostics 
(we refer to Napoletani, Panza and Struppa 2011 for a list of 
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references on this technique, or to Amaratunga, Cabrera and 
Shkedy 2014 for a broad introduction).

A DNA microarray is essentially a matrix of microscopic sites 
where several thousand different short pieces of a single 
strand of DNA are attached. Messenger RNA (mRNA) mole-
cules are extracted from specific tissues of different patients, 
then amplified and marked with a fluorescent substance and 
finally dropped on each site of the microarray.

This makes each site show different levels of florescence ac-
cording to the amount of mRNA that binds with the strands 
of DNA previously placed in it. The intensity and distribution 
of the fluorescence provides a way to evaluate the degree of 
complementarity of the DNA and the mRNA strands.

This provides a correspondence between the information 
displayed by a DNA microarray and the behavior of a cell. 
This correspondence, however, is by no means exact or un-
equivocal, since the function of many proteins in the cell is 
not known, and several strands of DNA  are complementary 
to the mRNA strands of all protein types. Nevertheless, thou-
sands of strands of DNA are checked on a single microarray, 
so that one might expect this method to offer a fairly accu-
rate  description of the state of the cells, even if it does not 
offer any understanding of what is happening in the relevant 
tissues. The microarray is, indeed, particularly valuable for a 
huge number of variables, whose relation to each other and to 
the state of the cell we ignore.

This does not forbid, for example, the use of microarrays for 
the diagnosis of many illnesses. By measuring the activity of 
proteins, one may be able to distinguish patients affected by a 
certain pathology from those patients that are not, even with-
out knowing the reason for the differences.

From a mathematical point of view, this process can be de-
scribed as follows: let us label ‘X

i
’ the vector of expression 

levels of mRNA strands associated with a patient i: the hope 
is to be able to find a function F such that F(X

i 
) = 0 if the 

patient does not have a particular disease, and F(X
i 
) = 1 if 

the patient does have the disease. The question of how to find 
such a function F is at the core of agnostic science, and we will 
come back to it shortly.

This brief description of DNA microarrays should  be enough 
to justify why this technology can be taken as a paradigmat-
ic example of the way agnostic science works. In short, this 
point of view can be summarized as follows: 

If enough and sufficiently diverse data are collected re-
garding a certain phenomenon, we can answer all rele-
vant questions about it.

This slogan, which we refer to as the ‘microarray paradigm’, 
pertains not only to this specific example, but also applies to 
agnostic science as whole.1 The question we want to tackle 
here is what makes this paradigm successful (at least in a rel-

evant number of cases).

To better grasp the point, let us sketch the general scheme 
that agnostic science applies under this paradigm: data are 
processed through an appropriate algorithm that works on 
the available data independent of their specific nature and 
of any knowledge concerning the possible relationships be-
tween the relevant variables. The process is subject to nor-
malization constraints imposed by the data, rather than by 
the (unknown) structure of the phenomenon. This treatment 
produces an output which is taken as an answer to a specific 
question about this phenomenon.

This approach makes it impossible to generalize the results 
or even deal with a change of scale; different questions re-
quire different algorithms whose structure is general and 
applied uniformly across different problems. Moreover, the 
specific mathematical way in which a question is formulated 
depends on the structure of the algorithm which is used, and 
not the other way around. 

To illustrate how blind methods work, we will provide a quick 
overview of supervised machine learning  (we shall come 
back to this description in more detail later). While this is 
just an example, it will show the strong similarity between 
blind methods and interpolation and approximation theory.

The starting point is a training set (X,Y), constituted by M 
pairs (X

i
,Y

i
) (i = 1,2, ... ,M), where each X

i
 is typically an ar-

ray (X [j]
i ) (j = 1,2, ... , N) of given values of N variables. For 

example, in the DNA microarray example, each array X
i
 is the 

expression of mRNA fragments detected by the microarray, 
while the corresponding Y

i 
 indicates the presence (Y

i 
= 1) or 

absence (Y
i 
= 0) of a given disease.

By looking at this training set with the help of an appropri-
ate algorithm, the data scientist looks for a function F such 
that F(X

i 
) = Y

i
 or F(X

i 
) ⇡ Y

i
 (i = 1,2, ... ,M). This function is 

usually called a ‘classifier’ if the output is categorical, and a 
‘model’ or a ‘learned function’ for continuous outputs. In the 
following cases, we refer to F as a ‘fitting function’, to stress 
the connection of supervised machine learning with approx-
imation theory.

In general, one looks for a function F that satisfies these con-
ditions for most indices i. Moreover, it is helpful if the func-
tion belongs to a functional space F  selected because of its 
ability to approximate general regular functions in a compu-
tationally efficient way. For example, if the regular functions 
of interest are analytical functions over an interval, F  can be 
taken to be the space of polynomial functions defined on the 
same interval.

Let A be the space of parameters that define a function in 
F ,  and denote its elements as F

a
(X), where a is an array of 

parameters in F . The standard way to find the most suitable 
Fa 2 F  for a supervised learning problem is akin to function-
al approximation that can be described as follows. One de-

1 - We introduced the term ‘microarray paradigm’ in (Napoletani, Panza and Struppa 2011) to refer to a specific attitude towards the solution of data science 
problems, and not only to denote the technique underlying DNA microarrays.  The microarray paradigm, as an attitude to the solution of problems, should not be 
confused with agnostic science, which is a general scientific practice implementing  this attitude. It should also not be confused with any particular blind method, 
namely a specific way to implement the microarray paradigm.
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fines a ‘fitness function’ E(a) by comparing the output F
a
(X

i
) 

to the corresponding value Y
i
 at each X

i
, and by setting

E(a) =
P

i(Yi � Fa(Xi))
2.

The most suitable Fā  is then identified, by seeking a value ā 
that minimizes E(a). The function Fā  selected in this way is 
then tested on a testing set (X

i
,Y

i
), (i = M+1, M+2, ... M+M’), 

and, if it is found to be accurate on this set as well, it is used 
by analytical continuation to forecast Ỹ  when a new instance 
of argument X̃  is taken into account.

Though brief, this description shows that supervised ma-
chine learning consists of analytically continuing a function 
found by constraining its values on a discrete subset of points 
defined by the training set. Moreover, supervised learning 
gives a mathematical form to the basic classification problem; 
given a finite set of classes of objects, and a new object that 
is not labelled, find the class of objects to which it belongs. 
What is relevant, however, is that each of the numbers M, N, 
and M’ may be huge, and we have no idea of how the values 
Y

i 
 depend on the values X

i
, or how the values in each array 

X
i
 are related to each other. In particular, we do not know 

whether the variables taking these values are reducible (that 
is, depend on each other in some way) or whether it is possi-
ble to apply suitable changes of scale or normalization on the 
variables.

Supervised learning is therefore emblematic of agnostic sci-
ence since we have no way to identify a possible interpolating 
function F

a
, except the use of appropriate algorithms. Our 

lack of understanding of the phenomenon ensures that there 
is no effective criterion to guide the choice of the vector of 
parameters a, which are instead initially taken to be arbitrary 
values, and eventually corrected by successive reiterations of 
the algorithm, until some sort of stability is achieved.

Note that not all data science algorithms fall directly under 
the domain of supervised learning. For example, in unsuper-
vised learning, the goal is not to match an input X to an out-
put Y, but rather to find patterns directly in the set of inputs 
{X

1 
, ... , X

M
}. The most recent consensus is that unsupervised 

learning is most efficiently performed when conceived as a 
particular type of supervised learning (we shall come back 
to this point later). Another important modality of machine 
learning is reinforcement learning, a sort of semi-super-
vised learning strategy, where no fixed output Y is attached 
to X, and the fitting function F

a
 is evaluated with respect to 

a system of ‘rewards’ and ‘penalties’ such that the algorithm 
attempts to maximize the first and minimize the second. 
This type of machine learning is most often used when the 
algorithm needs to make a series of consecutive decisions 
to achieve a final goal (as for example when  attempting to 
win in a game such as chess or Go). Similar to unsupervised 
learning, it has been shown (Mnih et al. 2015) that reinforce-
ment learning works best when implemented in a modified, 
supervised learning setting.

Given the possibility of reducing both unsupervised and rein-
forcement learning to supervised learning schemes, we con-

tinue our analysis of supervised learning algorithms.

We now consider another important question suggested by 
the uncontrolled parameter structure of the supervised fitting 
function. Is it possible that, by working on a large enough 
data set, one can find arbitrary patterns in the data set that 
have no predictive power? The question can be addressed 
with the help of combinatorics, namely through Ramsey’s 
theory. This makes it possible to establish, in many cases, the 
minimal size for a set S  in order to enable the identification 
of a given combinatorial pattern in a subset of S  (Graham, 
Rothschild and Spencer 2015). By adapting Ramsey’s theory 
to data analysis, Calude and Longo (2017) have shown that 
with large enough data sets any possible correlation among 
the data can be established.

This might suggest that asking how much data is enough is 
only part of the problem.2 To avoid  the possibility of making 
the result of blind methods perfectly insignificant, another, 
possibly more important question is: how much data is too 
much?

There are several comments to be made on this matter.

To begin with, we note that Ramsey’s theory proves the exis-
tence of lower bounds on the size of sets of data that ensures 
the appearance of correlations. However, these lower bounds 
are so large as to be of little significance for the size of data 
sets one usually handles.

More importantly, Ramsey’s theory enables the presence of 
patterns in subsets of the initial data set to be established. In 
supervised learning, on the other hand, we require that every 
element of X matches with an appropriate element of Y; this 
is essentially different from seeking correlations in a subset 
of the data set. In other words, Ramsey’s theory would only 
show that it is possible to write F(X

i 
) = Y

i 
 for some specific 

subset of elements of X and of Y. This would have no useful 
application in practice for supervised learning, where the to-
tality of the available data must be properly matched.

Hence, as long as finding patterns within a data set X is tied 
to supervised learning, there is no risk of uncontrolled and 
spurious correlations. Instead, any such correlation will be 
strongly dependent on its relevance in finding the most ap-
propriate fitting function F. Moreover, we will see in Section 
4 that even when blind methods do not seem to fall within the 
structural constraints of supervised learning, they can still be 
reinterpreted as such.

We should add that agnostic science enters the game not in 
opposition to traditional, theoretically bound methods, but 
as another mode of exploration of phenomena, and it should 
in no way discourage, or inhibit the search for other methods 
based on previous understanding. Any form of understand-
ing of the relevant phenomena is certainly welcome. Still, our 
point here is that there is no intrinsic methodological weak-
ness in blind methods that is not, in one way or another, al-
ready implicit in those methodologies with a theoretical bent. 
At their core, they all depend on some sort of inductive infer-

2 - On this question, note that there are also ways to apply data science  to small data sets, if we accept strong limitations on the type of questions and we impose strong regulari-

zation restrictions on the type of solutions (Napoletani, Signore et al. 2011).
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ence: the assumption that a predictive rule, or a functional 
interpolation of data, either justified by a structural account 
of phenomena, or by analytical continuation of interpolating 
functions, will continue to hold true when confronted with 
new observations.

Supervised learning shows that we can succeed, despite the 
obvious (theoretical and/or practical) risks, in using data to 
find patterns useful for solving specific problems with the 
available resources (though not necessarily patterns univer-
sally associated with the relevant phenomena). The degree 
of success is manifest in disparate applications such as face 
recognition (Schroff, Kalenichenko and Philbin 2015), auto-
mated translation algorithms (Wu et al. 2016), playing (and 
beating humans) at difficult games such as Go (Silver et al. 
2016), and even the noteworthy progress in self-driving cars 
(Rao and Frtunikj 2018). This makes agnostic science both 
useful and welcome.

However, the intrinsic and unavoidable risks of  agnostic sci-
ence mean that it is important to understand why it frequent-
ly works well, and what makes it successful. We should not be 
blind as to why blind methods succeed! Lack of understand-
ing of phenomena does not necessarily require lack of under-
standing of agnostic science itself. Rather, it demands such 
an understanding in order to provide some sort of indirect 
(scientific, methodological, political or ethical) control. This 
is the aim of an informed philosophy of data analysis, which 
shows not only its intellectual interest, but also its practical 
utility and necessity.

3 – Agnostic Science versus 
Lack of Control
Before continuing our search for such a (meta-)understand-
ing, we observe that agnostic science is not equivalent to the 
use of data-driven algorithms on large amounts of data. As we 
will see in this section, we can single out computationally ef-
ficient algorithms that can be applied to extremely large data 
sets. Yet these very algorithms can be proven to converge. 
Since we fully understand their output and the structure of 
the data that makes them useful, they cannot be considered 
as blind algorithms and their use is not an example of ag-
nostic science. To better illustrate this point, we will describe 
PageRank: the algorithm used by Google to weight web pages 
(Brin and Page 1998; Page et al. 1998).

Let A be a web page with n other pages T
i
  (i = 1,2, ... , n)  

pointing to it. We introduce a damping factor d
A
 (0  d  1) 

that describes the probability that a random web surfer land-
ing on A will leave the page. If d

A 
= 0, no surfer will leave the 

page A; if d
A 

= 1, every surfer will abandon the page. One can 
chose d

A
 arbitrarily or on the basis of any possible a priori rea-

son. Such choice does not affect the outcome of the algorithm 
in the limit of a sufficiently large number of iterations of the 
algorithm itself. The PageRank of A is given by this formula:

PR(A) =
1� dA

n
+ dA

 
nX

i=1

PR (Ti)

C (Ti)

!
.

where PR(T
i
) and C (T

i
) are respectively the PageRank of T

i
 

and the number of outgoing links starting at T
i
.

This formula is very simple, but it is recursive; in order to 
compute PR(A), one needs to compute the PageRank of all 
the pages pointing to A. In general, this makes it impossible 
to directly compute it, since if A points to some  T

i
, then in 

turn PR(T
i
) depends on PR(A). However, this does not make 

the computation of PR(A) impossible, since we can compute 
it by successive approximations: (1) we begin by computing  
PR(A) choosing any arbitrary value for PR(T

i
), (2) the value 

of PR(A) computed in step (1)  is used to provisionally com-
pute PR(T

i
), (3) next PR(A) is recalculated on the basis of the 

values of PR(T
i
)  found in (2), and so forth for a sufficient 

number of times.

It is impossible to say a priori how many times the process 
has to be reiterated in order to reach a stable value for any 
page of the Web. Moreover, the actual complexity and dimen-
sion of the Web make it impossible to follow the algorithm’s 
computation at any of its stages, and for all the relevant pag-
es. This is difficult even for a single page A, if the page is suffi-
ciently connected within the Web. Since the Web is constant-
ly changing, the PageRank of each page is not fixed and has to 
be computed again and again such that the algorithm needs 
to be run continuously. Thus, the impossibility of any local 
control on this process is obvious.

Still, it can be demonstrated that the algorithm converges to 
the principal eigenvector of the normalized link matrix of the 
Web. This makes the limit PageRank of any page, namely the 
value of the PageRank of the given page in this vector, a mea-
sure of the centrality of this page in the Web.

Whether this actually measures the importance of the page is 
a totally different story. What is relevant is that the algorithm 
has been designed to compute the principal eigenvector, un-
der the assumption that the value obtained in this way is an 
index of the importance of the page. Given any reasonable 
definition of importance, and under suitable conditions, it 
has been recently been proved (Masterton, Olsson and An-
gere 2016, Theorem 2) that PageRank will asymptotically (in 
the size of the Web) rank pages according to their importance.

This result confirms the essential point: the algorithm re-
sponds to a structural understanding of the Web, and to the 
assumption that the importance of any page is proportional 
to its centrality in its normalized link matrix. Then, strictly 
speaking, there is nothing blind in this approach, and using 
it is in no way an instance of agnostic science, although the 
Web is one of the most obvious examples of Big Data. So what 
makes blind methods blind, and agnostic science agnostic?

Agnostic science appears when, for the purpose of solving 
specific problems, one uses methods to search patterns which, 
unlike PageRank, correspond to no previous understanding. 
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This means we use methods and algorithms to find prob-
lem-dependent patterns in the hope that, once discovered, 
they will provide an apparent solution to the given problem. 
If this is so, then agnostic science is not only a way to solve 
problems from data without structural understanding, but 
also a family of mathematically sophisticated techniques to 
learn from experience by observation of patterns.  Still, atten-
tion to invariant patterns is ultimately what Plato  (Theaete-
tus, 155d) called ‘astonishment [jaumàzein]’, and considered 
to be ‘the origin of philosophy [Çrqò filosof–ac]’. What hap-
pens with agnostic science is that we have too much data to 
be astonished by our experience as guided by the conceptual 
schemas we have at hand. So we use blind methods to  look 
for sources of astonishment deeply hidden within these data.

4 – Forcing And Deep Learn-
ing Neural Networks

4.1 Forcing Optimality
We will now try to understand the features of an algorithm 
that make it suitable for identifying appropriate patterns 
within a specific problem.

The question has two facets. On the one hand, it consists 
of asking what makes these algorithms successful.  On the 
other hand, it consists of wondering what makes them so ap-
propriate (for a specific problem). The difficulty is that what 
appears to be a good answer to the first question seems to 
contradict, at least at first glance,  the possibility of providing 
a satisfactory answer to the second question.

Indeed, with regard to the first question, we would say in 
our terminology, that the algorithms perform successfully 
because they act by forcing, i.e., by choosing interpolation 
methods and selecting functional spaces for the fitting func-
tions in agreement with a criterion of intrinsic (mathemati-
cal) effectiveness, rather than conceiving  these methods in 
connection with the relevant phenomena. 

This answer seems to be in contrast with the possibility of 
providing a satisfactory answer to the second question, since 
it appears from the start to negate the possibility of under-
standing the appropriateness of methods in agnostic science. 
However, we do not think that this is the case. In this section 
we refine the notion of forcing by looking more carefully at 
the use of optimization in data science, and more specifically 
for a powerful class of algorithms, the so-called deep learning 
neural networks. 

Finally, in Section 5, we explore several ways to make the 
answer to the question regarding the success of data science 
algorithms compatible with the existence of an answer to the 
appropriate question. 

As we showed in (Napoletani, Panza and Struppa 2011, 2017), 
boosting algorithms is a clear example of forcing. Forcing is 
designed to improve weak classifiers, generally just slightly 
better than random ones, and to transform them, by iteration, 
into strong classifiers. This is achieved by carefully focusing 

each iteration on the data points that were misclassified in 
the previous iteration. Boosting algorithms are particularly 
effective in improving the accuracy of classifiers based on se-
quences of binary decisions (so called `classification trees’). 
Such classifiers are easy to build, but on their own are rela-
tively inaccurate. Boosting can, in some cases, reduce error 
rates for simple classification trees from 45% to about 5% 
(Hastie, Tibshirani and Friedman 2016, Chapter 10).

Regularization algorithms offer a second example. If the data 
are too complicated and/or rough, these algorithms render 
them amenable to being treated by other algorithms, for ex-
ample, by reducing their dimension. Despite the variety of 
regularization algorithms, they can all be conceptually equat-
ed to the process of approximating a non-necessarily differ-
entiable function by a function whose derivative absolute val-
ue is bounded from above everywhere on its domain.

The use of these algorithms reveals a double application of 
forcing: forcing on the original data to smooth them, and then 
forcing on the smooth data to treat them with a second set of 
algorithms. For example, after a regularization that forces the 
data to be smooth, some data science methods advocate the 
forcing of unjustified differential equations in the search for 
a fitting function (Ramsery and Silverman 2005, chapter 19). 
These methods have been very effective in recognition of the 
authenticity of handwritten signatures and they depend es-
sentially on the condition that the data are accounted for by 
a smooth function.

Since in virtually all instances of forcing, the mathematical 
structure of the methods is either directly or indirectly reduc-
ible to an optimization technique, we claim that optimization 
is a form of forcing within the domain of agnostic science. 

In a sense, this is suggested by the historical origins of optimi-
zation methods (Panza 1995, 2003). When Maupertuis, then 
President of the Berlin Academy of Sciences, first introduced 
the idea of least action, he claimed to have found the quantity 
that God wanted to minimize when creating the universe. Eu-
ler, at the time a member of the Berlin Academy of Sciences, 
could not openly criticize the President, but clearly adopted 
a different attitude, by maintaining that action was nothing 
more than what was expressed by the equations governing 
the system under consideration. In other terms, he suggested 
that one should force the minimization (or maximization) of 
an expression like Z

F (x)dx

on any physical system in order to find the function F charac-
teristic of it. Mutatis mutandis, this is the basic idea that we 
associate today with the Lagrangian of a system. Since that 
time, optimization became the pre-eminent methodology in 
solving empirical problems.  One could say that the idea of 
a Lagrangian has been generalized to the notion of a fitting 
function, whose optimization characterizes the dynamics of 
a given system.

Though this might be seen as a form of forcing within a 
classical setting, one should note that, in this case, the only 
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thing that is forced on the problem is the form of the relevant 
condition and the request that a certain appropriate integral 
reaches a maximum or minimum. In this classical setting, 
however, the relevant variables are chosen on the basis of a 
preliminary understanding of the system itself, and the rele-
vant function is chosen so that its extremal values yield those 
solutions that have already been found in simpler cases. 

Things change radically when the fitting function is selected 
within a convenient functional space through an interpola-
tion process designed to make the function fit the given data. 
In this case, both the space of functions and the specific fit-
ting procedure (which makes the space of functions appropri-
ate) are forced on the system. These conditions are often not 
enough to select a unique fitting function or to find or ensure 
the existence of an absolute minimum, so that an additional 
choice may be required (forced) to this purpose. 

There are many reasons why such an optimization process 
can be considered effective. One is that it matches the mi-
croarray principle; enough data, and a sufficiently flexible set 
of algorithms, will solve, in principle, any scientific problem. 
More concretely, optimization has shown to be both simple 
and relatively reliable, not necessarily to find the actual solu-
tion of a problem, but rather to obtain, without exceeding 
time and resource constraints, outcomes that can be taken as 
useful solutions to the problem. The outcomes of optimiza-
tion processes can be  tested in simple cases and shown to be 
compatible with solutions that had been found with methods 
based on a structural understanding of the relevant phenom-
enon.3 In addition, the results of an optimization process may 
turn out to be suitable for practical purposes, even when it 
is not the best possible solution. An example is provided by 
algorithms for self-driving cars. In this case, the aim is not to 
mimic human reactions, but rather to simply have a car that 
can autonomously drive with sufficient attention to the safety 
of the driver and all other cars and pedestrians on the road. 

This last example makes it clear that we can conceive optimi-
zation as a motivation for finding algorithms without being 
constrained by the search for the best solution. Optimization 
becomes a conceptual framework for the development of 
blind methods. 

Blind methods are disconnected from any consideration of 
actual optimality; this sets them apart from methods in per-
turbation theory, where a solution to a more complex prob-
lem is derived from a (small) deformation of a solution of a 
simpler problem. On the one hand, there is no doubt that 
looking at supervised learning as a case of interpolation leads 
naturally to a comparison with such a theory, and the sophis-
tication of its most modern versions (including perturbation 
methods in quantum field theory4) and may  provide funda-
mental contributions to data science in this respect. On the 
other hand, blind methods place the process of interpolation 
at the center, rather than any correspondence between exist-
ing instances of solutions (i.e., simpler problems) and those 
to be determined (that we can equate to more complex prob-

lems).

Optimization as forcing also raises some important issues 
beyond the obvious one, which is typical of blind methods, 
namely the absence of an a priori justification.

One issue is that, in concrete data science applications such 
as pattern recognition or data mining, optimization tech-
niques generally require fixing a large number of parameters, 
sometimes millions of them, which not only makes control 
of the algorithms hopeless, but also makes it difficult to un-
derstand the way algorithms work. This large number of pa-
rameters often results in a lack of robustness, since different 
initial choices of parameters can lead to completely different 
solutions.

Another issue is evident when considering the default tech-
nique of most large-scale optimization problems, the so-
called  point-by-point optimization. Essentially, this is a tech-
nique where the search for an optimal solution is done locally, 
by gradually improving  any currently available candidate 
for the optimal choice of parameters. This local search can 
be done, for example, by using the gradient descent method 
(Goodfellow, Bengio and Courville 2016, Section 4.3), which 
does not guarantee that we will reach  the desired minimum, 
or even a significant relative minimum. Since virtually all sig-
nificant supervised machine learning methods can be shown 
to be equivalent to point-by-point optimization (Napoletani, 
Panza and Struppa 2017), we will briefly describe the gradi-
ent descent method.

If F(X) is a real-valued multi-variable function, its gradient 
rF  is the vector that gives the slope of its tangent oriented 
towards the direction in which it increases most. The gradi-
ent descent method exploits this fact to obtain a sequence of 
values of F which converges to a minimum. Indeed, if we take 
K

n
 small enough and set

xn+1 = xn −KnrF (xn) (x = 0, 1, . . .)

then

F (x0) � F (x1) � F (x2) , . . .

we hope to see this sequence of values converge towards the 
desired minimum. However, this is only a hope, since noth-
ing in the method can guarantee that the minimum it detects 
is significant.

4.2 Deep Learning Neural Networks
Let us now further illustrate the idea of optimization as forc-
ing, by considering the paradigmatic example of deep learn-
ing neural networks (we follow here (Hastie, Tibshirani and 
Friedman 2016, Section 11.3; Goodfellow, Bengio and Cour-
ville 2016)) as it applies to the simple case of classification 
problems.

The basic idea is the same as anticipated above for the search 
of a fitting function F by supervised learning. One starts with 
a training set (X,Y), where X is a collection of M arrays of 

3 - This is different from choosing the fitting function on the basis of solutions previously obtained with the help of an appropriate understanding.

4 - For example, in (Napoletani, Petricoin and Struppa 2012) a general classification problem from developmental biology is formulated as a path integral akin to those used in 

quantum mechanics. Such integrals are usually analyzed with the help of perturbative methods such as WKB approximation methods, see (Schulman 2005, Chapter 18).
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variables:

X = (X1, . . . , XM ) Xi =
⇣
X

[1]
i , . . . X

[N ]
i

⌘

and Y is a corresponding collection of M variables:

Y = (Y1, . . . , YM ) .

What is specific to deep learning neural networks is the set of 
specific steps used to recursively build F.

1. We build K linear functions 

Q[k](Xi) = A0,k +

NX

n=1

An,kX
[n]
i (k = 1, . . . ,K),

where A
n,k

 are K(N+1) parameters chosen on some a pri-
ori criterion, possibly even randomly, and K is a positive 
integer chosen on the basis of the particular application 
of the algorithm.

2. One then selects an appropriate non-linear function G 
(we will say more about how this function is chosen) to 
obtain K new arrays of variables

H [k](Xi) = G
⇣
Q[k](Xi)

⌘
(k = 1, . . . ,K).

3. One chooses (as in step 1) a new set of T (K+1) param-
eters B

k,t
 in order to obtain T linear combinations of the 

variables H [k](Xi)

Z [t](Xi) = B0,t +

KX

k=1

Bk,tH
[k](Xi) (t = 1, . . . , T ),

where T is a positive integer appropriately chosen in ac-
cordance with the particular application of the algorithm.

If we stop after a single application of steps 1-3, the neural 
network is said to have only one layer (and is, then, ‘shallow’ 
or not deep). We can set T=1 and the process ends by impos-
ing that all the values of the parameters are suitably modified 
(in a way to be described shortly) to ensure that:

Z [1](Xi) ⇡ Yi (i = 1, . . . ,M), 

For any given new input X̃, we can then define our fitting 
function F as F (X̃) = Z [1](X̃).5 In deep networks, steps 1-3 
are iterated several times, starting every new iteration from 
the M arrays Z [t](Xi) constructed by the previous iteration. 
This iterative procedure creates several ‘layers’, by choosing 
different parameters A and B (possibly of different sizes as 
well) at each iteration, with the obvious limitation that the 
dimension of the output of the last layer L has to match the 
dimension of the elements of Y. If we denote by Z

[1]
L (Xi) the 

output of the last layer L, we impose, similar to the one layer 
case, that Z [1]

L (Xi) ⇡ Yi.

In other words, the construction of a deep learning neural 
network involves the repeated transformation of an input 
X by the recursive application of a linear transformation 

(step 1) followed by a non-linear transformation (step 2) and 
then another linear transformation (step 3).

The algorithm is also designed to facilitate learning, in the 
absence of Y, by using X itself, possibly appropriately regular-
ized, in place of Y (auto-encoding). When an independent Y 
is used, the learning is called ‘supervised’ and provides an in-
stance of the setting described in Section 3. In its absence, the 
learning is instead, called ‘unsupervised’ (Goodfellow, Bengio 
and Coureville 2016, chapter 14), and its purpose is to find 
significant patterns and correlations within the set X itself. 
The possibility of using an algorithm designed for supervised 
learning, for unsupervised learning is an important shift of 
perspective. It constrains the exploration of patterns within 
X, for the sole purpose of regularizing the data themselves. 
Whichever correlations and patterns are found, they will be 
instrumental in this specific aim, rather than in the ambigu-
ous task of finding causal relationships within X.

Two things remain to be explained. The first concerns the 
non-linear function G, called ‘activation function’ (because of 
the origin of the algorithm as a model for neural dynamic). 
Such function can take different forms. Two classical exam-
ples are the sigmoid function

G(u) =
1

1 + e�u

and the ReLU (Rectified Linear Unit) function

G(u) = max(0, u).

This second function is composed of two linear branches and 
therefore is, mathematically speaking, much simpler than the 
sigmoid function. While also the ReLU function is not linear, 
it has uniform slope on a wide portion of its domain, and this 
seems to explain its significantly better performance as acti-
vation function for deep networks. The use of an appropriate 
activation function allows the method to approximate any 
function that is continuous on the compact sets in Rn. This 
result is known as the universal approximation theorem for 
neural networks (Hornik 1991)

The second thing to be explained concerns the computation 
of the parameters according to the condition:

Z
[1]
L (Xi) ⇡ Yi (i = 1, . . . ,M).

This is typically achieved through the gradient descent meth-
od by minimizing a fitness function such as:

MX

i=1

h
Yi � Z

[1]
L (Xi)

i2
.

The gradient is computed by an appropriate fast algorithm 
adapted to neural networks known as backpropagation 
(Hastie, Tibshirani and Friedman 2016, Section 11.4). As we 
have already noted in (Napoletani, Panza and Struppa 2013), 
the effectiveness of neural networks (both deep and shallow) 

5 - For classification problems, one often imposes P (Z [1](Xi)) ⇡ Yi, (i = 1, . . . ,M), where P is a final, suitably chosen, output function, see (Hastie, Tibshirani and Friedman 

2016, Section 11.3). For any new input X̃, the fitting function is, then, F (X̃) = P (Z [1](X̃)).
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seems to depend more on the specific structure of the back-
propagation algorithm than on the universal approximation 
properties of neural networks.  Note also that the minimiza-
tion of the fitness function is equivalent to a regularization of 
the final fitting function, if we stop the iterative application of 
the backpropagation algorithm when the value of the fitness 
function does not significantly decreases any further (Good-
fellow, Bengio and Courville 2016, Section 7.8).
 
When dealing with deep networks, one can go as far as to con-
sider hundreds of layers, though it is not generally true that 
increasing the number of layers always improves the mini-
mum of the corresponding fitness function. Nevertheless, in 
many cases, taking more layers often allows up to a tenfold 
reduction of errors. For example, it has been shown that  in 
a database of images of handwritten digits, classification er-
rors go from a rate  of 1.6% for a two-layer network (Hast-
ie, Tibshirani and Friedman 2016, Section 11.7) to a rate of  
0.23% with a network of about 10 layers (Ciresan, Meier and 
Schmidhuber 2012).

This short description of the way in which deep learning 
neural networks operate should be enough to clarify why we 
have taken them as an example of optimization by forcing. 
Above all, both the dependence of the effectiveness of neural 
networks on the structure of the backpropagation algorithm, 
and  their interpretation as regularization, are clear indica-
tions that the way neural networks are applied is an instance 
of forcing.

More broadly, the opacity of the recursive process that cre-
ates the layers of the network is matched by computationally 
driven considerations that establish the specific type of gra-
dient descent method to be used, and by a criterion to stop 
the whole iterative process that is simply based on the inabil-
ity to find better solutions. However, this same description 
should be enough to clarify the second question mentioned at 
the start of this section: how can methods like deep learning 
neural networks be appropriate for solving specific problems 
when the methods themselves do not in any way reflect the 
particular features of the problems? We explore this question 
in the next section.

5 – On the Appropriateness of 
Blind Methods

5.1 Understanding Methods rather than Phe-
nomena
A simple way to elude the question of the appropriateness 
of blind methods is by negating its premise. One can argue 
that, in fact, blind methods are in no way appropriate, that 
their success is nothing but appearance and that the faith in 
their success is actually dangerous, since such faith provides 
an incentive to the practice of accepting illusory forecasts and 
solutions.

The problem with this argument is that it ultimately depends 
on arguing that blind methods fail to succeed because they 
do not conform with the pattern of classical science. How-

ever, an objective look at the results obtained in data science 
should be enough to convince ourselves that this cannot be 
a good strategy. Of course, to come back to the example of 
DNA microarrays, grounding cancer therapy on microarrays 
alone is as inappropriate as it is dangerous, since, in such a 
domain, looking for causes is as crucial as it is necessary. At 
the same time, we cannot deny the fact that microarrays can 
be used as an evidential basis in a search for causes. In addi-
tion, we cannot deny that, in many successful applications of 
blind methods, such as handwriting recognition, the search 
for causes is much less crucial. 

So we need another justification of the effectiveness of blind 
methods, which, far from negating the appropriateness ques-
tion, takes it seriously and challenges the assumption that 
classical science is the only appropriate pattern for good sci-
ence. Such an approach cannot depend, of course, on the as-
sumption that blind methods succeed because they perform 
appropriate optimization.  This assumption merely displaces 
the problem, since optimization is only used by these meth-
ods as a device to find possible solutions.

A more promising response to the question of the appro-
priateness of blind methods might be that they succeed for 
the same reason as classical induction does; blind methods 
are indeed interpolation methods on input/output pairs, 
followed by analytical continuation, which is how induction 
works. Of course, one could argue that induction itself is not 
logically sound, but should one really reject it as an appropri-
ate method in science because of this? Is there another way to 
be empiricist other than trusting induction?  Can one really 
defend classical science without accepting some form of em-
piricism, as refined as it might be? We believe that all these 
questions should be answered in the negative, and therefore 
that the objection itself is immaterial. 

There are, however, two other important objections to this 
response.

The first is that it applies only to supervised methods, that 
is, methods based on the consideration of a training set on 
which interpolation is performed. It does not apply, at least 
not immediately, to unsupervised methods, where no sort of 
induction is present.  However, this objection is superseded 
by noting that it is possible to reduce unsupervised methods 
to supervised ones through the auto-encoding regularization 
processes described above.

The second objection is more relevant. It consists of recogniz-
ing that, when forcing is at work, interpolation is restricted to 
a space of functions which is not selected by considering the 
specific nature of the relevant phenomenon, and that cannot 
be justified by any sort of induction. Rather, the choice of the 
functional space corresponds to a regularization of the data 
and it often modifies those data in a way that does not reflect, 
mathematically, the phenomenon itself. 

This objection is not strong enough to force us to completely 
dismiss the induction response, but it makes it clear that ad-
vocating the power of induction cannot be enough to explain 



53

N° 2   2021

Vol. 8

The Agnostic 
Structure of Data 
Science Methods

the success of agnostic science. This general response is, at 
least, to be complemented by a more specific and stronger 
approach.

In the remainder of this section, we would like to offer the 
beginning of a new perspective, consistent with our interpre-
tation of the structure of blind methods.

The basic idea is to stop looking at the appropriateness ques-
tion as a question concerning some kind of correspondence 
between phenomena and specific solutions found by blind 
methods. The very use of forcing makes this perspective il-
lusory. We should instead look at the question from a more 
abstract, and structural perspective. Our conjecture, already 
advanced in (Napoletani, Panza and Struppa 2014, 2017), is 
that we can find a significant correspondence between the 
structure of the algorithms used to solve problems, and the 
way in which phenomena of interest in data science are se-
lected and conceived. We submit, indeed, that the (general) 
structure of blind methods, together with the formal features 
of the microarray paradigm, exert strong restrictions on the 
class of data sets that agnostic science deals with.

5.2 Brandt’s Principle and the Dynamics of 
Blind Methods
To justify the existence of these restrictions, we start by re-
calling a result of (Napoletani, Panza and Struppa 2017), that 
all blind methods share a common structure that conforms to 
the following prescription: 

An algorithm that approaches a steady state in its out-
put has found a solution to a problem, or needs to be re-
placed.

In (Napoletani, Panza and Struppa 2017) we called this pre-
scription ‘Brandt’s principle’, to reflect the fact that it was 
first expounded by Achi Brandt for the restricted class of 
multi-scale algorithms (Brandt 2002).

As simple as Brandt’s principle appears at first glance, in 
(Napoletani, Panza and Struppa 2017) we showed that this 
principle allows a comprehensive and coherent reflection of 
the structure of blind methods in agnostic science. First of 
all, Brandt’s principle is implicit in forcing, since an integral 
idea in forcing is that if an algorithm does not work, another 
one must be chosen. More specifically, the key to the power 
of this principle is that the steady state output of each algo-
rithm, when it is reached, is chosen as input to the next algo-
rithm if a suitable solution to the initial problem has not yet 
been found.

Notably, deep learning architecture matches with Brandt’s 
principle, since the iteration of the gradient descent algo-
rithm is generally stopped when the improvement of param-
eters reaches a steady state and, then, either the function that 
has been obtained is accepted and used for forecasting or 
problem-solving, or the algorithm is replaced by a new one, 
or at least re-applied starting from a new assignation of val-
ues to the initial parameters. Moreover, all local optimization 
methods satisfy this principle and since most algorithms in 

agnostic data science can be rewritten as local optimization 
methods, we can say that virtually all algorithms in agnostic 
data science can be written in this way. 

In (Napoletani, Panza and Struppa 2017) we argued that 
thinking about algorithms in terms of Brandt’s principle of-
ten sheds light on those characteristics of a specific method 
that are essential to its success. For example, the success of 
deep learning algorithms, as we have seen in the previous 
section, relies in a fundamental way on two advances: (1)  the 
use of the ReLU activation function that, thanks to its con-
stant slope for non-zero arguments, enables the fast explo-
ration of the parameter space with gradient descent, and (2) 
a well-defined regularization obtained by stopping the gra-
dient descent algorithm when error rates no longer improve 
significantly. Both these advances took a significant amount 
time to be identified as fundamental to the success of deep 
learning algorithms, perhaps exactly because of their decep-
tive simplicity, and yet both of them are naturally derived 
from Brandt’s principle.

There is, however, a possible objection to ascribing a decisive 
importance to this principle (one that is in the same vein as 
that discussed in Section 2, considering an argument from 
(Calude and Longo 2017)). This objection relies on the obser-
vation that, in practical applications, agnostic science works 
with floating-point computations which require a finite set of 
floating-point numbers. The point, then, is that any iterative 
algorithm on a finite set of inputs, reaches a limit cycle in a 
finite period of time, in which case steady states satisfying 
Brandt’s principle become trivial and uninformative regard-
ing the nature of the subjacent phenomenon. 

However, blind methods that satisfy Brandt’s principle, such 
as boosting algorithms and neural networks, will usually con-
verge to steady states after just a few thousand iterations. 
Limit cycles in an algorithm’s output due to the limitations 
of floating-point arithmetic, will instead appear after a very 
large number of iterations, comparable to the size of the set of 
floating-point numbers. Any practical application of Brandt’s 
principle needs to take this into consideration by imposing, 
for example, that the number of iterations necessary to reach 
a steady state is at most linear in the size of the training set.

Regardless of this practical limitation in recognizing steady 
states, the real significance of Brandt’s principle for super-
vised learning algorithms is that it shifts the attention from 
the optimization of the fitting function F to the study of the 
dynamics of the algorithm’s output. In this perspective, ap-
plying Brandt’s principle depends on building sequences of 
steady-state fitting functions {F

j 
}  that are stable in their per-

formance under the deformations induced by the algorithms 
chosen during the implementation of the principle itself. This 
generates a space of fitting functions that are mapped into 
each other by the different algorithms. 

A clear example of this process is provided by boosting, 
where the entire family of fitting functions (that is recursive-
ly found) is robust in its performance, once the classification 
error on the training set stabilizes. Moreover, fitting func-
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tions found by the algorithm at each recursive step are built 
by combining all those that were found earlier (by weighting 
and adding them suitably). Indeed, boosting is an instance of 
ensemble methods, where distinct fitting functions are com-
bined to find a single final fitting function. It can be argued 
that a lot of the recent progress in data science has been due 
to the recognition of the central role of ensemble methods 
(such as boosting), in greatly reducing error rates when solv-
ing problems (Hastie, Tibshirani and Friedman 2016, Chap-
ter 16). 

5.3 Ensemble Methods and Interpolation
Note that for ensemble methods to be trustworthy, eventu-
ally they must stabilize to a fitting function that does not sig-
nificantly change with the addition of more sample points. 
Therefore, if we take the limit of an infinite number of sample 
points, generically distributed across the domain where the 
relevant problem is well defined, the fitting function is forced 
to be unique.

To understand the significance of this instance of forcing, we 
first rephrase the basic slogan of the microarray paradigm in 
more precise terms as a quantitative microarray paradigm:

Given enough sample data points, and for a large and 
suitably diverse set of variables X, the value of any other 
variable Y relevant for the solution of a given problem 
can generally be calculated from the value of X (via the 
fitting function F(X)=Y).

Once this assumption is admitted, the unicity of F in the limit 
entails a form of analyticity on the fitting function which we 
call ‘asymptotic sample-analyticity’:

Let N be the dimension of X; then, for N sufficiently 
large, F(X)=Y is uniquely determined, on an appropriate 
domain, by a generic infinite set of sample points.

In application, we will always have finite data, and we will not 
be able to choose F uniquely to solve a problem. However, 
suppose that the same solution is given by the entire class of 
asymptotically sample-analytic functions that are compatible 
with the available data. Do we trust that such a solution re-
flects a relevant actual property of the phenomenon at hand6? 
The question shifts attention from the nature of data sets to 
the nature of the space of functions defined on them, and on 
their assemblage by appropriate algorithms. 

Our suggestion is that blind methods succeed when (and 
because) they select, in agreement with Brandt’s principle, 
appropriate classes of asymptotically sample-analytic func-
tions, apt to robustly provide uniquely determinate solutions 
for the data problems at hand. 

Despite this shift from data sets to functions on data sets, the 
properties of such functions enforce some general conditions 
on the data as well. First of all, the quantitative microarray 
paradigm essentially requires variables in the data set to be 
strongly interdependent in the limit of large data sets. Sec-
ond, we claimed at the end of Section 5.2 that Brandt’s prin-

ciple identifies a space (ensemble) of fitting functions that are 
stable in their ability to solve a given problem. Such stability 
is possible only if the functional relations that can be defined 
on the variables are themselves robust, so that they persist 
across the large data sets that are required by the microar-
ray paradigm. It is not important for interdependence and 
robustness to be apparent, that is, we do not need to be able 
to identify the specific dependence of variables from each 
other. Nor it is important for robustness to warrant a long-
term conservation of specific relations among the variables. 
What is relevant is that the interdependence is strong and 
persistent enough to allow iterative algorithms conforming 
to Brandt’s principle to subsequently correct their outputs by 
building more and more convenient fitting functions.

The requirements of interdependence of variables and ro-
bustness of functional relations among them, can now be 
used to discriminate data sets most suitable for the applica-
tion of blind methods. For example, such requirements are 
believed to be satisfied by developmental biological systems, 
see (Minelli 2003). Moreover, in (Napoletani, Panza and 
Struppa 2017) we gave evidence that social and economical 
systems satisfy a generalization of the “principle of develop-
mental inertia”, an organizing principle for developmental 
biology, first proposed in (Minelli 2011). It is therefore likely 
that the same interdependence and robustness satisfied by 
biological systems holds for most social and economical sys-
tems as well.

We conclude that the microarray paradigm and Brandt’s 
principle enforce specific requirements on data sets and that 
these requirements are likely to be satisfied by data arising 
from biological, social and economical systems. Blind meth-
ods would then be most appropriate when applied to such 
systems. 

6 – Conclusion
In this paper we reviewed and extended a perspective on 
the methodological structure of data science which we have 
been building in a series of papers (Napoletani, Panza and 
Struppa 2011, 2013, 2014, 2017). The basic assumption of our 
approach is that data science is a coherent approach to em-
pirical problems that in its most general form does not build 
understanding about phenomena. It is due to this character-
istic that we labelled this approach to empirical phenomena 
‘agnostic science’, and called the methods that make up ag-
nostic science ‘blind methods’.

The basic attitude underlying agnostic science is the belief 
that if enough and sufficiently diverse data are collected re-
garding a certain phenomenon, it is possible to answer all 
relevant questions about it. In Section 2, we referred to this 
belief as the microarray paradigm and we explored the specif-
ic ways it is used in the practice of machine learning.

We noted in Section 3 that not all computational methods 
dealing with large data sets are properly within the domain 
of agnostic science, and we gave the example of PageRank, 
an algorithm used to weight web pages. The convergence of 

6 -  Note that sample-analyticity can be forced on any discrete variable in the problem after imposing continuity on such variables.
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this algorithm and the significance of its output are readily 
intelligible and therefore we argued that PageRank is not a 
blind method.

In Section 4.1 we explored how the microarray paradigm calls 
for a new type of mathematization in agnostic science, where 
mathematical methods are forced on the problem, i.e., they 
are applied to a specific problem only on the basis of their 
ability to reorganize the data for further analysis by gener-
al purpose techniques that are selected only on the basis of 
the richness of their mathematical structure, rather than by 
any particular relevance for the problem at hand. We then 
showed that optimization methods are used in data science as 
a form of forcing. This is particularly significant since virtu-
ally all methods of data science can be rephrased as a type of 
optimization method. In particular, in Section 4.2 we argued 
that deep learning neural networks are best understood with-
in the context of forcing optimality. 

In Section 5 we moved to the broader question of the appro-
priateness of blind methods in solving problems. In Section 
5.1 we argued that this question should not be interpreted as 
a search for a correspondence between phenomena and spe-
cific solutions found by blind methods. Rather, it is the in-
ternal structure of blind methods that should be understood, 
and its implications on the structure of the data sets that are 
most appropriate for such methods.

In Section 5.2 we reviewed a simple prescription on algo-
rithms, Brandt’s principle, which asserts that an algorithm 
that approaches a steady state in its output has found a solu-
tion to a problem, or needs to be replaced. One of our main 
claims in (Napoletani, Panza and Struppa 2017) was that 
Brandt’s principle is ideally suited for the understanding of 
the dynamical structure of blind methods. For example, in 
Section 5.2 we used Brandt’s principle to understand two of 
the significant innovations of deep learning neural networks: 
the use of the ReLU activation function in the network, and 
an efficient criterion for early stopping of the algorithm. En-
semble methods, where distinct fitting functions are com-
bined to find a single final fitting function, can also be inter-
preted within the context of Brandt’s principle. 

In Section 5.3 we showed that Brandt’s principle and the mi-
croarray paradigm force a specific type of analytical structure, 
which we call ‘sample-analyticity’, on the final fitting function 
found by ensemble methods. We argued that sample-analyt-
icity forces a shift from data sets to functions on data sets. 
In turn, the properties of such functions enforce two general 
conditions on the data sets: a strong interconnectedness of 
the variables of the data set, and the robustness of the func-
tional relations of such variables. 

Finally, we speculated that blind methods are most appropri-
ate for the solution of problems in biological, social and eco-
nomical systems, since data sets arising from these systems 
are likely to satisfy the two conditions above.
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