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Résumé

Nous introduisons les enveloppes convexes comme outil de visualisation et d'analyse
des données démographiques. Les enveloppes convexes sont largement utilisées en
informatique et ont été appliquées dans des domaines tels que I'écologie, mais sont
jusqu'a présent sous-utilisées dans les études démographiques. Nous discutons brie-
vement des enveloppes convexes, puis nous montrons comment elles peuvent étre
appliquées utilement a la démographie. Nous le faisons a travers trois exemples, ti-
rés de la relation entre mortalité infantile et mortalité adulte (sqo et 45g15 dans les
tables de mortalité). Les trois exemples sont : (i) les différences de mortalité selon le
sexe ; (ii) les différences entre période et cohorte et (iii) I'identification des valeurs
aberrantes. Les enveloppes convexes peuvent étre utiles pour compiler des bases de
données démographiques de maniéere cohérente. De plus, le décalage entre sexes
ou entre périodes et cohortes est plus complexe lorsque les données sur la mortalité
sont regroupées selon deux composantes plutét que selon une mesure unidimen-
sionnelle comme l'espérance de vie. Nos exemples montrent comment, dans cer-
tains cas, les enveloppes convexes peuvent identifier plus facilement que d'autres
techniques les tendances dans les données démographiques. Les applications poten-
tielles des enveloppes convexes dans les études de population vont au-dela de la
mortalité.
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Analyse exploratoire des données, enveloppe convexes, mortalité, qualité des don-
nées.
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Abstract

We introduce convex hulls as a data visualization and analytic tool for demography.
Convex hulls are widely used in computer science, and have been applied in fields
such as ecology, but are heretofore underutilized in population studies. We briefly
discuss convex hulls, then we show how they may profitably be applied to demogra-
phy. We do this through three examples, drawn from the relationship between child
and adult mortality (sgo and 4s5g1s in life table notation). The three examples are: (i)
sex differences in mortality; (ii) period and cohort differences and (iii) outlier identi-
fication. Convex hulls can be useful in robust compilation of demographic databases.
Moreover, the gap/lag framework for sex differences or period/cohort differences is
more complex when mortality data are arrayed by two components as opposed to a
unidimensional measure such as life expectancy. Our examples show how, in certain
cases, convex hulls can identify patterns in demographic data more readily than
other techniques. The potential applicability of convex hulls in population studies
goes beyond mortality.

Keywords
Exploratory data analysis, convex hulls, mortality, data quality.

Introduction

We propose convex hulls as a technique of demographic analysis, illus-
trated by three examples. The convex hull of a set of points is the region
defined by a perimeter in which the line segment connecting any two
points lies on or inside the perimeter4. An informal heuristic is that if a set
of points consists of pegs in a board, the convex hull is the shape of a rub-
ber band stretched around the outermost pegs, such that all the pegs are
enclosed by the band. Figure 1 is an example: the data are seven random
points in a plane (1A). There are a number of ways to draw a perimeter,
of which one is shown (1B). The unique convex hull is illustrated as a
white polygon (1C). The dashed line segments (1D) demonstrate why the
region in 1B is not convex. Line segments connecting any two points in
the data may be an edge of the convex hull, or interior, but cannot pass
outside of it. Convex hulls exist in all dimensions: as a range (line seg-
ment) for unidimensional data, as polygons in R? («2D»), as polyhedra in

4. For a concise and more formal definition, cf. Kemeny and Snell (1962, p. 123);
also Kemeny et al. (1966), pp. 312-3: «A convex set C is a set such that whenever u and v
are points of C, the entire line segment between u and v also belongs to C». A two-dimen-
sional convex hull consists of vertices, edges that connect these vertices, and the (interior)
convex polygon defined by the edges; see Figure 1.
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R? («3D»), and as polytopes in higher dimensional spaces. We only consi-
der applications in two dimensions.

FIGURE 1

A: seven randomly-distributed points in a plane. B: one possible pe-
rimeter and its (non-convex) polygon (shaded). C: the convex hull, in
white. D: dashed line segments illustrate non-convexity of the original
perimeter. Vertices of the convex hull are shown as filled disks, while
original points that are members of the convex set (i.e., the white re-
gion), but are not hull vertices, are shown as open circles.

Calculating a convex hull of multidimensional data is analogous to sorting
unidimensional data; it determines the boundaries, which in the univari-
ate case is the minimum and maximum (Barnett, 1976). For cross-classi-
fied data, the x range is the orthogonal projection of the convex hull onto
the x-axis, similarly with the y data, and so on for higher dimensions. Us-
ing convex hulls in data analysis is not a new idea. «Tukey peeling», also
called convex peeling (Hodge, Austin, 2004), has some similarities to our
third application. As an alternative to Winsorization (Tukey, 1962),
Tukey peeling entails obtaining robust estimates in multivariate analysis
by removing (the vertices of) one or more convex hulls from the data, pre-
analysis. It originated in the early 1970s (Huber, 1972), and is further
elaborated in Tukey (1975) and Bebbington (1978).
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TaBLE 1 Country list: Start and end years

End Start End
2014
2014
2014
2015
2010
2011
2005
2014
2014 1835 1923
2013
2015 1878 1924
2014 1816 1923
2013
2013
2013
2014
2014
2013 1838 1922
2014
2012 1872 1921
2014
2013
2013
2014
2012 1850 1921
2008
2008
2014 1846 1923
2014
2015
2014
2014
2014
2014
2014 1751 1923
2014 1876 1923
2014
2013 1841 1922
2013 1855 1922
2013
2013
2015

t: missing 1914-1918.
*: total population (i.e., not only civilian).
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The properties of convex hulls of data are fairly well understood, pro-
vided the data are reasonably well behaved. There is a large literature
here; see, f.e., Efron (1965), Eddy (1980), Aldous et al. (1991), Blackwell
(1992), Snyder, Steele (1993), Hueter (1994), Massé (2000), Suri et al.
(2013). To the best of our knowledge, these techniques have not been ap-
plied in depth in demography. Appearances of «convex hull» in the demo-
graphic literature are sparse and arise in conjunction with linear pro-
gramming solutions (f.e., Georgakis, Tziafetas, 1982), rather than as an
analytic tool on its own. Wrigley and Schofield’s (1981, p. 247) «demo-
graphic terrain» is similar in spirit to convex hull analysis as we concep-
tualize it (see also Goldstone, 1986; Galloway, 1994). Neighboring aca-
demic fields, such as ecology, have used convex hulls more (f.e., Getz, Wil-
mers, 2004; Cornwell et al.,, 2006). Our three applications illustrate the
usefulness of convex hulls to population studies.

Materials and Methods

Using data on all countries in the Human Mortality Database (HMD)
(2017, Barbieri et al., 2015), we analyze life table probabilities of child
and adult mortality (5qo and 4sq1s, respectively). Table 1 lists the included
countries. Throughout, we refer to cross-classification of child and adult
mortality as the mortality relationship, and, as applicable, the mortality
hull. We perform three analyses, the first of which compares male and
female convex hulls, on a country-by-country basis. The second analysis
compares period and cohort data, on a per-country and per-sex basis. The
third examines outlier countries in the HMD, in which we systematically
delete one country at a time, and quantify how the convex hull changes.
Convex hull calculation is well studied (Preparata, Shamos, 1985; de Berg
etal, 2008), and is available in many software packages. We used IDL ver.
8.6 (Exelis Visual Information Solutions, Inc., Boulder, Colorado, USA).

Figure 2 is an example of the convex hull approach to the mortality rela-
tionship, showing the mortality hull, separately by sex, for the entire data
set. Individual countries are color-coded, although most of the data are
densely clustered and therefore overlapping. Superposed on Figure 2 is a
more conventional approach, a regression fit of 45q15 as a quadratic func-
tion of 5qo, along with its 95% prediction intervals. Near the center of

5. This is wider than the 95% confidence interval of the regression curve. See, f.e.,
Snedecor and Cochran (1989), p. 168; DeGroot and Schervish (2002), p. 614; etc.
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mass, the regression line does a good job of representing the tendency of
the mortality relationship.

FIGURE 2
0.9

0.0 0.2 04 0.6

sdo
Adult vs child mortality, by sex. With convex hull, and quadratic regres-
sion line (solid) and its associated 95% prediction interval (dashed). In-
side the hull, line segments connect chronologically-consecutive
points on a per-country basis.
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Nonetheless, we think Figure 2 is a good illustration of the shortcomings
of the parametric curve fitting approachsé. Particularly away from the cen-
ter, and even with the prediction interval, the regression line does not
represent the variation of the data as well as the convex hull. This is not
surprising: the central tendency - not the variation - is the concern of the
regression curve (Mosteller, Tukey, 1977, p. 266). For the males, all of the
data outside of the prediction interval, except two points, lie above it. The
females show a more standard situation, in which the points outside the
95% prediction interval are roughly evenly split between above and be-
low. The reason for the male asymmetry is that negative health shocks
- especially wars, in the male:female context - are severe and, in period
data, sudden. Positive health shocks, on the other hand (f.e., Gorbachev’s
anti-alcohol campaign, see Bhattacharya et al., 2013) are less common.
Sudden policy changes, such as tobacco taxes, typically take time to show
their salutary effects. Regardless, it is not ideal that the male data outside
the prediction interval lies mostly above it. This points to our endeavor
of finding other techniques that might be used.

The geometric (viz., convex hull) approach is not meant to be a replace-
ment for curve fitting, but a complement to it. Nonetheless, in many areas
of population studies, convex hulls may better capture the inherent vari-
ation of the data, especially in situations where the quantities of interest
do not have a homoskedastic relationship?’. The logic of our approach is
that when comparing the mortality relationship (or any other multivari-
ate classification) of two or more populations, convex hulls are a natural
way to see how the data interleave. This approach is superior to compar-
ing the bivariate ranges, which would replace the hulls with rectangles of
potentially much greater area.

The cross-classification of child and adult mortality - the mortality rela-
tionship - has been studied without hulls. In populations with incomplete
data, it is common to have only estimates of 45q15 and sqo (or similar), from
which the rest of the life table is imputed (Timaeus, Moultrie, 2013). Even
without the use of convex hulls, data quality can be assessed by compar-
ing the mortality relationship of a single country to model predictions
(Woods, 1993, 2000, p. 375; Rao et al., 2005), or to a battery of countries
with good data quality (Reniers et al,, 2011; Gerland, 2014). Examining

6. An excellent example of the regression approach to two life table quantities is
Woods and Hinde (1987), p. 45.
7. For quantities sometimes analyzed on log scale (see, f.e., Wilmoth et al., 2012),

log the data first, then calculate the hull, not vice versa. Although the logarithmic trans-
formation is monotone, it is not affine, so it need not preserve convexity. The hulls of the
log-log mortality relationship behave much in the same way as the ones presented here.
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the mortality relationship (or similar cross classifications of life table
quantities) is a staple of methodological work on model life tables (f.e.,
Coale, Demeny, 1983; Murray et al., 2003; Wilmoth et al., 2012). Demeny
and Gingrich (1967) look at sqo and e(5), which is similar in spirit. Convex
hull analysis permits quantification of these comparisons.

Results

Sex differences

FIGURE 3
0.35
0.25

0.15

45q15

0.05

.08

5q0

.02

.005

1945 1965 1985 2005
Year

Sex differences in mortality, gaps and lags perspective. Female ad-
vantage, which is the typical, can be viewed as a period gap (vertical
axis), or as a lag (horizontal axis) of males. A: sqo, child mortality; B:
45q1s, adult mortality. All data from HMD, for the United States.

Much of population studies concerns time series of demographic phe-
nomena (life expectancy, total fertility rate, etc.). Gaps and lags is one way
to conceptualize the movement of two time series of the same quantity
for related populations. Figure 3 illustrates this for American males and
females; each panel shows a different mortality measure: Figure 34, child
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mortality (sqo); Figure 3B, adult mortality (ss5q15). The separations be-
tween the male and female series can be regarded as a gap (along the ver-
tical axis, shown in white), or as a lag (along the horizontal axis, shown in
black). In 1945, the male-female gap in child mortality was 11 per thou-
sand. Or, one could say that the males would take 4.5 more years to
achieve the equivalent 5qo as females in 1945 (a lag). Goldstein and
Wachter (2006) formalized the gaps and lags framework, using periods
and cohorts as the population dichotomy. As we show here without the
formalism, this framework also applies to sex differences.

FIGURE 4
1.0

0.8

0.6

45915

0.4

0.2

0.0

0.4
0.3
UQ 0.2
0.1
0.0
0 .025 .05 .075 A
5Qo

Male (blue) and female (red) sex-specific hulls for the mortality rela-
tionship, Iceland (ISL) and United States (USA). Overlap shown in pur-
ple. Bullseyes mark the centroids of the hulls.
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In the univariate time series approach, gaps can be recast as lags. In terms
of mortality decline, males and females plough the same ground, but the
female mortality advantage (or gap) means that males do so later. Figure
4 shows the convex hull approach to this problem. Consider first the «ISL»
panel, for Iceland. We see exactly the phenomenon of males following in
the path of females: the hulls are substantially overlapping. Given that the
time period is the same for each sex, we should not expect total overlap.
Males begin the series with mortality levels higher than seen in females,
and females end the series with lower mortality than seen in males for
the same time interval. Thus, we expect two regions, at opposite ends of
the space, where the hulls do not overlap. This is precisely what the con-
vex hull plot for Iceland shows.

For the United States (Figure 4, «<USA»), the convex hull analysis reveals
a different pattern. Unlike the univariate time series in Figure 3, the
males’ mortality relationship does not follow in the footsteps of the fe-
males’. The convex hulls are disjoint, indicating that males and females
are not playing follow the leader, but are taking different paths. The dis-
parate lags in Figure 3 (i.e., 35 years for adult mortality but only 4.5 years
for child mortality) drive the disjointness of the male and female hulls.
The long lag for the adult mortality data is thought to be due principally
to behavioral influences, especially tobacco use (Pampel, 2002). While a
careful read of Figure 3 would allow one to predict the divergent paths
over time, the hull approach reveals this much more clearly. It is expected
that the sex-specific hulls will eventually overlap as the mortality relation-
ship evolves, given that zero is a floor for the mortality data (s5qo, 45q15)-

The Iceland data go back to 1838, and high variance contributes to the
overlap of the hulls. The American data begin in 1933 and show less var-
iance, with thinner hulls. Of the twenty countries with disjoint hulls, (Ta-
ble 2), all have data beginning after the Second World War, except Portu-
gal (1940) and the United States (1933) (Table 1). With improvements in
nutrition, the advent of antibiotic drugs, and so on, the postwar mortality
regime is lower variance (at least in the HMD member countries), which
favors disjoint hulls. However, the overlap is not exclusively driven by
noisy prewar data. Austria (1947), Bulgaria (1947), Ireland (1950), Japan
(1947), Luxembourg (1960), and New Zealand/Maori (1948) are all ex-
clusively postwar data, yet have overlapping hulls. Graphs of the sex-spe-
cific hulls for the other forty countries (see Table 1) are in Appendix I.
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TABLE 2

Country

Australia
Austria
Belarus
Belgium
Bulgaria
Canada

Chile

Czech Republic
Denmark
Estonia
Finland
France

E Germany
W Germany
Greece
Hungary
Ireland
Iceland

Israel

Italy

Japan

Latvia
Lithuania
Luxemburg
Netherlands
N.Z. (Maori)
N.Z. (Non-Maori)
Norway
Poland
Portugal
Russia
Slovakia
Slovenia
Spain
Sweden
Switzerland
Taiwan
U.K./England & Wales
U.K./Scotland
U.K./Northern Ireland
Ukraine
United States

Female to male

Intersection

Area Diameter areaasa % of intersection

Ratio
(A)
0.518
0.346
0.231
0.666
0.292
0.439
0.274
0.337
0.936
0.291
0.285
0.412
0.385
0.346
0.308
0.286
0.484
0.914
0.568
0.428
0.809
0.233
0.194
0.366
0.645
1.022

0.58
0.804

0.22
0.622
0.274
0.368
0.322
0.555
0.883
0.632
0.907
0.296
0.748
0.661
0.225
0.332

Ratio
(B)
0.869
0.777
0.295
0.985
1.049
1.044
0.585
0.831
0.941
0.368
0.574
0.793
0.913
0.635
0.819
0.854
0.976
1.009
0.613
0.851
0.881
0.338
0.336
0.573

0.94
1.472
0.754
0.905
0.828
0.912
0.307
1.093
0.404
0.987
0.988

0.89
0.969
0.815
0.959
1.131

0.23
0.896

M
(©
18.9

58.4
0.3
34

78.9

20.9
36.4

12.1
80.8

39.6
19

3.9
61.2
73.2
52.5
68.8

42.7
83.3
56.8

25.6
44.1
52

F M
(D) (E)
36.4 0
disjoint
disjoint
87.6 0
1.1 111
77.4 0
disjoint
disjoint
843 182
disjoint
73.4 0
88.3 0
disjoint
disjoint
disjoint
disjoint
25 8.3
88.4 20
disjoint
92.5 0
23.5 0
disjoint
disjoint
10.7 0
94.9 0
71.6 333
90.5 0
85.5 0
disjoint
disjoint
disjoint
disjoint
disjoint
77 0
94.3 0
89.8 0
disjoint
86.4 0
59 8.3
78.7 0
disjoint
disjoint

F
(F)
58.3

35.7

31.2

40

35.7
30

27.3
50

10
37.5

20
72.7
40
57.1
42.9

9.1
50
333

57.1
50
40

% of points in  Euclidean
dist. btwn. opposite hull?

centroids

(G)
0.041
0.072
0.162
0.022
0.074
0.016
0.074
0.086
0.039
0.163

0.21
0.161
0.077
0.067
0.059
0.109
0.039
0.062
0.043
0.083
0.044
0.187
0.163
0.083
0.032
0.009
0.062
0.042
0.118
0.083
0.219
0.097
0.108
0.049
0.035
0.066
0.079
0.123
0.042
0.007
0.166
0.061

Male and female hulls: Descriptive and comparative statistics

Centroid in
M F

(H) (0]

No No
Yes Yes
No No
Yes Yes
Yes Yes
No Yes
No Yes
No No
Yes Yes
No Yes
No No
No No
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No Yes
Yes Yes
Yes Yes
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Table 2 gives comparative descriptive statistics of the sex-specific hulls,
on a per-country basis. Columns A and B give the area and diameter ratio,
respectively, of the female to male hull. The diameter of a convex hull is
the greatest pairwise distance between its vertices®. The quantities in col-
umns A and B can take on any value greater than zero?. These are meas-
ures of comparable data expanse, in this case, between the sexes, on a
same-country basis. For example, Iceland females and males have values
in columns A and B close to unity (0.91 and 1.01) while those for the
United States are smaller, especially for area (0.33 and 0.91). This reflects
the situation in Figure 4, in which the hulls for Iceland are much more
alike than those for the United States, in which the female is much thinner.
Time series data for male mortality typically have higher variance than
those for females. As a result, all the male hulls have larger area than the
corresponding female hull, except New Zealand/Maori. Six male hulls
have shorter diameters than the corresponding female hull (the value in
column B is > 1), but usually males have covered more distance as meas-
ured by the diameter. This broadly reflects males’ typically lower-mortal-
ity starting point, and convergence (in absolute terms) as both sexes ex-
perience mortality decline0.

Columns C and D of Table 2 give the intersection area as a percent of male
and female hulls!!. This statistic varies from 0 to 100 percent; zero values
are labeled «disjoint», indicating no path overlap of the mortality rela-
tionship over time. The most interesting aspect of these columns is that
almost half the hulls (20/42) are disjoint across the sexes, indicating that
male mortality decline, as measured by the mortality relationship, does
not follow in the footsteps of female mortality decline. Columns E and F
give the percentage of points of male and female data (all points, not just
hull vertices) contained within their intersection; this statistic varies

8. The diameter alternatively refers to the longest line segment between two ver-
tices - viz,, the line segment itself, not its length. Note that a convex hull may have more
than one diameter according to the segment definition, but only one by the length defini-
tion. For example, a rectangle has two equal-length diagonals. None of the hulls in this
analysis have multiple diameters.

9. Ignoring pathological cases in which data are perfectly colinear and so have a
hull with zero area. There are no such cases in these data. Therefore, throughout, when
we discuss hulls, we ignore these cases rather than mention their possible existence.

10. For example, if males start at ngx = 0.1 and females at ngx = 0.05, and they de-
cline to 0.01 and 0.005, respectively, the ratio doesn’t change but males cover far more
distance - 0.09 versus 0.045. See also Sheps (1959).

11. Another possibility would be the Dice-Sgrensen index (Dice, 1945; Sgrensen,
1948), which is 2c/(a + b), where c is the overlap area, and a and b are the areas of the
two hulls.
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from 0 to 100. For disjoint hulls, both columns E and F are zero by defini-
tion. For non-disjoint hulls, the values can still be zero, depending on how
the hull vertices are arrayed. A hull contained wholly inside another hull
would have a value of 100% here!2. As noted, the male hulls are larger,
but there are no male data points in the overlapping region for 16 of the
22 overlapping hulls (i.e., column E is 0.0 for 16 of the non-disjoint hulls).
Conversely, only one of the overlapping regions (Bulgaria) is devoid of
female data points. The variance of male time series causes the male hulls
to sweep out more area.

The distance between the centroids of each hull is given in column G;
these take on any non-negative value. Given that both axes are probabili-
ties, the ceiling in this application is V2. The centroid gives the location of
the center of mass of the hull, not of all the data points. The male and fe-
male hull centroids that are furthest apart are Russia (0.22) and Finland
(0.21); these hulls are disjoint and overlapping, respectively. Thus, vari-
ance as well as location drives the overlap/non-overlap of the hulls. Indi-
cators for whether the hull centroids lie inside the opposite-sex hull are
given in columns H and L. In 13 of the 22 overlapping hulls, the overlap
region contains the centroids of both convex hulls.

FIGURE 5
1.0

0.8 1

0.6 1

45915

0.4 4

0.2

0.0

0 0.1 0.2 0.3 0.4
500

12. Hulls that share an edge but do not otherwise overlap will be disjoint by the cri-
teria of columns C and D, but not by that of columns E and F. Edges of two different hulls
may touch without overlapping in area, but there are no such examples in the HMD data.



@ The geometry of mortality change:
Convex hulls for demographic analysis

4515

0 0.1 0.2 0.3 0.4
500

Period and cohort mortality relationship for Finland; data are harmo-
nized so that the period and cohort years coincide. For the period hulls,
males are blue and females are red. The cohort mortality relationship
is shown in yellow (or green, where it overlaps with male period data).
Dashed lines denote the diameters of the hulls. Underplotted in white
is the convex hull for the entire extent of the period data; by definition,
the red or blue hull is nested in this white hull. The visible white region
is therefore not convex, but the union of the white and red/blue re-
gions (ignoring the overlapping yellow hull) is convex. Labels «A» and
«B» refer to specific events, detailed in the text.

When mortality is summarized in more than one dimension, a male-fe-
male gap is not the same as a lag. Table 2 shows a diversity of relation-
ships. The male and female mortality hulls are, in many cases, disjoint
within the same national population. For some countries, the hulls are
quite different from disjoint, and contain each other’s centroid. Thinking
of the future of male mortality as catching-up to female mortality makes
sense on a unidimensional basis, but caution is warranted when sqo and
45q15 are considered jointly.

Period and cohort

The Finnish mortality relationship for periods and cohorts is shown in
Figure 5. Graphs for the ten other countries with cohort data (see Table
1) are in Appendix II. The female (red) and male (blue) convex hulls rep-
resent the period data for the same years (1878-1924 for Finland) as the
cohort data (yellow). The overlap of period and cohort hulls is shaded or-
ange for females (examples in Appendix II), and green for males. The fe-
male or male hulls are nested inside white hulls, representing all the
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available period data (1878-2015 for Finland). The visible white region
need not be convex because the red/blue hulls are superimposed.

Consider the data projected onto the horizontal axis (child mortality). Co-
hort sqo is a combination of 1gx for x=0,...,4, in five consecutive years of
time. The most important component, 1qo, is from the same calendar year
for both period and cohort data. Thus, the period and cohort spreads
along the horizontal axis are very similar. The forty-five year time/age
span of 4s5q15 brings out more profound differences. For Finnish females,
the ranges are similar in length, but overlap little, and the hulls are dis-
joint. Among the males, the range of cohort 45q15 data is much smaller
than that of the period data, and the cohort hull overlaps the period hull.
The minimum 4sq15 data point in the period hull corresponds to 1918 (la-
beled «A» in the Figure), reflecting the influenza pandemic (Ansart et al.,
2009) and the Finnish Civil War (Turpeinen, 1979). The 1939-40 Finno-
Soviet war did not occur during the time span of the cohort data; its ef-
fects can be seen in the white region (labeled «B»).

As seen in Finnish females and the graphs in Appendix II, the period hull
«floats» above the cohort hull. This is the analogue of the gap phenome-
non in the time series approach (Goldstein, Wachter, 2006). Nevertheless,
with the mortality relationship, the story is more complicated than gaps
and lags. The overlapping regions are generally small, and five sets of
hulls are disjoint, including Finnish females. Considered one dimension
atatime, the time series experience gaps and lags. Considered as the mor-
tality relationship, the period hulls do not lag the cohort hulls (viz., do not
cover the same ground).

Table 3 gives descriptive statistics for the cohort and period hulls. Apart
from column B, all the statistics refer to the period data that are coinci-
dent with the cohort data. Column A gives the period to cohort area ratio,
which, in the HMD data, is always > 1, except females in Great Britain (an-
alyzed below). This regularity occurs because the range of the 45q1s is
greater for the period data. Column B provides the same statistic, but in-
cludes all of the available period data (i.e., including the white region in
Figure 5), and therefore the period hull encloses many more data points
than that of the cohort. To achieve a meaningful statistic, we normalized
the area by the number of years; this is not necessary in any other column.
As with column A, most of the ratios are > 1, with females in Great Britain
and the Netherlands being exceptions.
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TABLE 3 Cohort and period hulls: Descriptive and comparative statistics

Period/cohort perimeter/area % of cohort -1 x diametric canonical corr.

Country Sex area area* cohort period outside per. corr.of 2 hulls  1st 2nd
(A) (8) (©) (D) (E) (F) (G)

Denmark M 1525 1157 43.09 3441  disjoint 0.978 0.956 0.295

F 1697 1339 5421 3317 952 0.996 0.958 0.389

i M 5118 4912 5227 2415 322 0573 0.854 0.097

Finlan F 1090 1.167 51.05 4043  disjoint 0.905 0.856 0.417

M 3220 2829 2977 1509  36.6 0.952 0936 0211

France F 1431 1866 4613 33.82 90.6 0.996 0943 0.238

and M 2235 1407 1814 9.33 35.3 0.999 0.887 0.110

Icefan F 2524 1498 19.14 10.01 44.6 0.987 0.874 0.076

| M 3.635 2288 3032 1634 687 0.654 0949 0331

Italy F 2272 1544 4838 29.87  disjoint 0.950 0.968 0.414

Netherlands M 1525 1394 31.93 2819  99.4 0.960 0978 0.543

F 1433 0950 3691 2899 986 0.999 0975 0.418

M 2077 1980 5454 2912 829 0.997 0937 0.259

Norway F 1385 1384 5261 33.89 88.9 0.946 0927 0.256

Sweden M 3318 2874 3526 1500  35.4 1.000 0934 0.205

F 3.853 3.350 4539 1677 408 0.994 0.927 0.199

: M 3.258 2353 70.82 27.39 disjoint 0.997 0.987 0.128
Switzerland o

F 2319 1689 7952 3750  disjoint 1.000 0986 0.131

M 2550 2188 4073 2252  86.6 0.890 0970 0.035

UK/England & Wales oo (614 4163 4933 953 1.000 0.970 0.344

T M 1045 1364 5433 5108  90.2 0.994 0919 0.269

F 0844 0891 5533 5147  92.0 0.961 0.927 0.279

* Comparison of full-extent period data, normalized (i.e., per number of years).

As a measure of spread, Table 3, columns C and D give the perimeter to
area ratios for the cohort and period hulls, respectively!3. This is notable
because only one population (England and Wales, females) has period pe-
rimeter-to-area ratio exceeding that for cohort. Larger values in columns
C and D of Table 3 correspond to hulls that are more shard-like in shape,
and smaller values to hulls that are more tent-like. Because different hulls
(graphs) have different scales, these comparisons work best on a within-
country and within-sex basis. Column E gives the percentage of the cohort
hull area that lies outside the period hull. Most have some overlap, but
five hulls (out of 22) are disjoint, including both sexes for the Swiss data.

13. The perimeter to area ratio is a positive quantity. As measured by this statistic,
a circle has the minimum spread of any convex shape. For a circle, the distance to the
furthest point from the center is the radius, r, and the perimeter to area ratio is 2/r. A
square of the same area has a perimeter of 4V(m)r, and a perimeter to area ratio of
(2/r)(2/v/m) > 2/r. The distance to the furthest point from the center of the square is
rv(1/2) > r. Thus, the square of the same area has more spread and a greater perimeter
to area ratio, and so on. The isoperimetric quotient (Apostol, Mnatsakanian, 2004) is a
possible alternative to the perimeter to area ratio.
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Finnish males are the most overlapping, with all but 32% of the cohort
hull overlapping with the period hull.

Now we introduce the diametric correlation (column F), or dcor(:, -). The
diametric correlation of two hulls, 4, B, is the cosine of the angle between
the diameters of the hulls, and has the sign of the slope of the diameter of
A (except, positive if that slope is zero). The diametric correlation is zero
if and only if the diameters of the two hulls are perpendicular. Like the
correlation coefficient, -1 < dcor(4, B) < 1% The diametric correlation
provides a useful dimensionless measure of how parallel, so to say, the
two hulls are. Moreover, «correlation is best understood as a measure of
angular separation» (Trosset, 2005, p. 2). While diameters may be per-
fectly parallel - and three of the hulls indeed have perfect diametric cor-
relation (i.e., rounded up to 1.0) - the hulls themselves are polygons
which do not have correlations in the traditional sense. The diametric
correlation is hull-based, not data-cloud-based. It is a measure of how
similar two hulls are oriented, based on the diameters. It resembles a
standard (i.e., Pearson) correlation coefficient in that it varies between -
1 and 1, but we stress that it is a measure of orientational agreement of
hulls, not (necessarily) the data inside them.

The Finnish example demonstrates the utility of the diametric correla-
tion. For males, the diametric correlation is 0.57 while for females it is
0.91. This is the biggest difference between males and females among all
the countries (Table 3, column F), as well as the smallest value. When
used as a comparative statistic, the diametric correlation quickly points
out Finland as a potential outlier. The absolute meaning is the cosine of
the angle between the diameters of the Finnish period and cohort hulls.
Why not just use the angle itself (i.e., in column F)? This would introduce
some practical concerns - degrees or radians, counterclockwise or clock-
wise, and so on.

14. Note that the diametric correlation is only commutative up to absolute value,
since dccor(A, B) = dcor(B, A) in some cases and dcor(A, B) = - dcor(B, A) in other cases.
Since the sign of the diametric correlation is determined only by the slope of the diameter
of A, the angle between the diameters can be either clockwise or counterclockwise, since
| cos(8)] = | cos(m - 0)|. As noted in footnote 8, none of these hulls have multiple diameters.
In the case of more than one diameter, define dcor(A, B) = max{dcor(A, B)} over all com-
binations of diameters of A and B. In the literature, we have not found any references to
the term diametric correlation as it relates to polygons, nor the use of this quantity as we
define it.
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Top panel («GBRTENW»): cohort mortality hull for England and Wales
females, with the sub-hulls for birth cohorts 1841-1881 (horizontal
hatching), and 1882-1922 (vertical hatching). Bottom panel: time se-
ries plot of sqo (right axis) and asqis (left axis); the axes have different
ranges but the same extent, so slopes are comparable. A 19-year pe-
riod starting in 1880 is a period of stagnation of cohort sqo.

Compare these to the hulls illustrated in Figure 5, where the alignment of
the two hulls seems much better (intuitively) for females. The diametric
correlation is more informative than at least one conventional approach:
column G gives the canonical correlations (Hotelling, 1936) of the period
and cohort data (not just the hull vertices)!5. Compared to other coun-
tries, Finnish males have the lowest first canonical correlation, although
not by far; they have the second-lowest second canonical correlation.
While Finnish males stand out in the hull diametric correlations (column
F), the differentness according to column G is more subtle. Compared to
conventional approaches, in at least some cases convex hulls can be a
quicker or easier route to identify patterns.

15. We used canonical correlations here because we are comparing period and co-
hort, each of which is, itself, a bivariate mortality relationship. This is a conventional (i.e.,
in this context, not hull-based) statistical approach. Thus, we analyze canonical correla-
tions of these sets of variates: {sqPo, 45qP15} and {sqco, 45q¢15}, where the superscripts refer
to period and cohort. Pearson correlation would be between two variables, and regres-
sion takes one variable on the left hand side. On canonical correlations, see Horst (1961).
Canonical correlations were calculated with Stata v.13.1, StatCorp LLC, College Station,
Texas.
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Another example is that Table 3 (especially columns A and B) points to
England and Wales, females, as being different. Figure 6 focuses on the
cohort data for England and Wales, females. Consider two subhulls, one
from the start of the data to the temporal midpoint, and another from the
midpoint+1 to the end of the data. These subhulls are superposed on the
hull of the cohort mortality relationship in Figure 6. The subhull for the
earlier half of the birth cohorts has horizontal hatching, and that for the
later half has vertical hatching. The union of these two subhulls forms a
non-convex region which envelops all the cohort data for England and
Wales females. The ratio of the area of the hatched region to the area of
the convex hull is called the convexity index (Tanimoto, 1987, p. 427); in
this example, it is 0.497. Using the midpoint as the pivot point of the sub-
hulls, this is the lowest such convexity index in the HMD data set among
females.

The bottom panel of Figure 6 gives a time series plot of 45q15 and sqo; the
midpoint (1881) is shown as a vertical rule, and a 19-year period from
1880 has lighter shading. This part of the Figure explains (in a mechanical
sense) why England and Wales females have the lowest convexity index,
and are outliers, in general, in Table 3. During the period 1880-99, cohort
child mortality stagnates while adult mortality continues to fall. This un-
usual pattern causes the mortality relationship to rise without much hor-
izontal displacement. This is seen clearly in the later (vertically-hatched)
subhull in Figure 6. As a result, the cohort convex hull is relatively larger
than that of the other hulls, which accounts for the unusual descriptive
statistics for England and Wales females in Table 3. The convexity index
analysis helps bring this into focus!é. The usual pattern of improvements
along both axes of the mortality relationship is interrupted, creating an
outlier. Mortality decline in Victorian England is well-studied, and while
trends in sqo have been shown before (Woods et al., 1988), we are una-
ware of comments on the unusual stagnation of cohort sqo relative to
45q1s5, compared to the same relationship in other countries. This is an-
other illustration of the strength of the convex hull approach.

16. In this case, the start of the period of sqo stagnation is very close to the midpoint
of the cohort series. An elaboration of this approach, not explored here, would be to find
the minimum convexity index after trying all possible partitions, of which there are N - 5,
maintaining temporal order. This assumes that the smallest partition will have three
points (therefore defining a polygonal hull), and that the first and last three points of the
data are non-colinear.
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Similar to the analysis of the sex differences, convex hull analysis of peri-
ods and cohorts shows that when data are cross-classified as the mortal-
ity relationship, period and cohort trends are not well described in terms
of gaps and lags. That is not especially surprising - the mortality relation-
ship is not life expectancy and does not have the same dimensionality.
Nonetheless, convex hull analysis helps bring out some interesting as-
pects of the mortality history more efficiently than looking one dimension
at a time. What is more, the convex hull approach to the mortality rela-
tionship allows quantitative characterizations of the patterns and how
they relate to one another. The bottom panel of Figure 6 is not hull-based;
while such multiple time series graphs can be extremely revealing, it is
impossible to calculate quantities such as diametric correlation without
using hulls.

TABLE4 Country peeling

Number of points Ratio of peeled  Number of Number of
Peeled Contrib.to  Outside to master hull  countriesin  sides in
country master hull peeled hull Area Diameter peeled hull peeled hull

(A) (B) () (D) (E) (F)

Males
Belarus 1 5 0.9994 1.0 8 12
Estonia 1 2 0.9997 1.0 7 11
Finland 2 2 0.9736 1.0 7 11
France 1 2 0.9919 1.0 7 11
Iceland 6 13 0.8092 0.9504 11 15
Russia 1 4 0.9977 1.0 6 12
Females
Belarus 1 3 0.9998 1.0 3 12
Iceland 8 16 0.6527 0.9333 10 16

N.Z. (Maori) 4 27 0.9829 1.0 3 10
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Adult vs child mortality, by sex. For each sex, two hulls are shown: the
outer, colored, hull is the master convex hull (the same as shown in
Figure 2). The inner, white, hull is the result of peeling Iceland, the data
of which are shown in color. Labels «C», «D» and «E» refer to specific
events, detailed in the text.

Country peeling: Outlier quantification

In this section, we demonstrate the use of convex hulls for outlier detec-
tion when assembling demographic databases such as the HMD. In using
convex hulls to identify outliers, we take a country-centered approach,
removing one country at a time and seeing how the resulting hull differs
from the master hull (i.e., the hull of the entire data set, Figure 2). This
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country peeling differs from Tukey peeling. In Figure 2, the female hull is
defined by 13 points from three countries and the male hull by 12 points
from six countries. Under Tukey peeling, we would remove these 13 or
12 points, respectively, and examine the modified data set, or peel the
next hull. With country peeling, we remove entire countries, one at a time,
instead of all the vertices of the master convex hull. Country peeling will
have no effect except when the country being peeled is one of the coun-
tries that contribute points to the master hull. The following analysis
demonstrates Iceland as a potential outlier in the HMD data.

When a country is peeled, a new, smaller, hull is calculated to reflect the
country-peeled data set. Table 4 lists the component countries of the mas-
ter hull and the number of points each of those countries contributes to
the master hull (column A). The next three columns of Table 4 give a
counterfactual as-if-adding scenario. That is to say, if a country were
never in the data set to begin with, and was then added, how much of an
outlier would it be relative to the convex hull of the prior mortality rela-
tionship. This can be measured by how many points (column B) of the
country lie outside the ex ante hull of the as-if-adding thought experiment
(i.e., the ex post peeled hull). It can also be measured by how large the
peeled hull is, relative to the as-if-added hull (viz., the master hull) (col-
umn C). Country peeling for Iceland is shown graphically in Figure 7. The
inner, peeled, hull (in white, consisting of points from 10 countries for
females and 11 for males) is smaller in area and has a smaller diameter
than the master hull. Graphs of the seven other peeled hulls (see Table 4)
are in Appendix III.

Column D gives the diameter of the peeled hull relative to that of the mas-
ter hull. This column reveals an idiosyncrasy of the HMD data, specifically
that Iceland populates the hull at both ends: high mortality for both chil-
dren and adults (in the 19th century), and low/low mortality (in the 21st
century). The endpoints of the diameter (known as the antipodes) need
not be drawn from the same country, but in the HMD data set, they are.
Thus, the diameter changes if and only if Iceland is the peeled country
(column D). One can visualize this difference in diameters by observing
that Iceland’s colored hulls extend past the peeled (white) hulls. Column
E gives the number of component countries of the peeled hull. For both
sexes, the Iceland-peeled hull stands out as having nearly the same num-
ber of component countries as the master hull, in contrast to the other
peeled countries, where this number declines more. Column F gives the
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Comparison of HMD and Lambda databases. HMD hulls are shown in
white, and hulls of HMD data since 1900 («20th C») are shown as
dashed lines. The Lambda hulls are color-shaded.

number of sides of the peeled hull??. This is a measure of the topological
complexity of the hull. In all cases except Iceland, the peeled hull has the
same number of sides, or fewer, compared to the master hull. The Ice-
land-peeled hull for both sexes has more sides than the master hull. As

17. This is the same as the number of vertices, as long as no edge contains more than
two vertices. This is unlikely with empirical data, but can arise with gridded data. There

are no such instances in any data analyzed here.
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with the prior columns, this descriptive statistic identifies Iceland as be-
ing qualitatively different.

Country peeling is a technique for outlier detection. It answers the ques-
tion, «if country X were being added to the HMD for the first time, how
different would it be from the existing countries?» Table 4 shows that
most countries are similar in the mortality relationship. Indeed, for fe-
males, only three countries would be flagged as outliers if being added
(one at a time) to the HMD for the first time. The most severe outlier for
both sexes, as quantified by Table 4, is Iceland. Iceland is an outlier in
large part because it has along data series (the fourth longest in the HMD,
cf- Table 1), and it goes from the being worst sqo performer among the
small set of HMD polities in the 1830s and 1840s (when it was a colony
of Denmark), to, often, the best in the twenty-first century?8. Historically,
Iceland experienced mortality crises (Schleisner, 1851; Tomasson, 1977),
some of which were associated with the tail end of Europe’s «Little Ice
Age» (Vasey, 2001), as well as epidemics of infectious disease associated
with periodic re-introductions of viruses. Specific years are labeled on
Figure 7: «C» (1846) and «D» (1882) were measles outbreaks (Cliff et al.,
1993; Gunnarsdottir et al., 2014), while «E» (1843) was an influenza epi-
demic (Hjaltelin, 1863). These events all correspond to hull vertices for
Iceland (and the master hull, Figure 2), except for «D» (1882) for females,
in which the point was close to the edge but not a hull vertex. Iceland is
now a highly developed country with excellent health statistics. Most
countries are not outliers, reflecting commonalities in the mortality rela-
tionship in the HMD data. The take home message is that convex hulls are
an effective tool for qualitatively identifying outliers, as well as quantify-
ing their degree of outlierness.

When adding new countries to an existing database, different mortality
patterns are sometimes flagged for potential recalculation, taking into ac-
count adjustments for completeness of registration, age misreporting,
and so on (f.e., Rosenwaike, Preston, 1984; Preston et al., 1999; Hill et al.,
2005; Hill et al. 2009; Palloni et al., 2016). Recall that, considering both
sexes, nine of the HMD populations would be considered outliers (to
some extent) if added to the database for the first time. While convex hull
analysis by itself cannot replace human judgment, it can provide a useful

18. Iceland is also small (f.e., total population under 100’000 in 1900), which en-
hances the variability of the annual life tables. To address this, the analysis of this section
was replicated using life tables from five years (of time). Results are presented in Appen-
dix IV. Iceland is still the principal outlier, for both sexes. The master and peeled hulls are
smaller, because 5-year life tables are buffered against shock events like epidemics. The
overall character of the analysis is the same, although some of the particulars change.
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way to quantify the degree of difference between the added population(s)
and the existing pattern.

We conclude this section with an example of using convex hulls to assess
the differentness of various data sets (Figure 8). Here we illustrate the
mortality relationship for the Latin American Mortality Database (2016)
in comparison to the HMD?9. This is relevant because it has been postu-
lated that Latin America has a characteristic mortality pattern (Arriaga,
1968; Arriaga, Davis, 1969; Palloni, 1981; Palloni, Wyrick, 1981; United
Nations, 1982; Palloni et al., 2006; Palloni, Pinto-Aguirre, 2011; Palloni,
Souza, 2013; Palloni et al., 2015). The HMD hulls, which are larger, are
shown in white, and the Latin American Mortality Database (Lambda)
hulls are superposed. The earliest Lambda life tables date from 1908.
Thus, to make a fairer comparison, we also show (as a dashed outline) the
HMD hull for all data since 1900.

A complete exploration of Latin America/HMD comparisons using the
convex hull approach is beyond the present scope. However, Figure 8
shows that the Latin American mortality relationship - based on the
Lambda data - is not completely different from that of the HMD. Specifi-
cally, the Lambda hulls are subsets of the overall HMD hulls. From this,
we can say that there are not wholesale differences between life tables of
these two data sets. An important caveat is that the mortality relation-
ship, as defined, is only one way to look at the life table. Also, this is a
comparison of Lambda and the HMD, not of Latin American and rest-of-
the-world mortality; it is limited by sample selection. Note also that the
Lambda hulls do exceed the HMD hulls constructed from data since 1900.
This makes sense, given the typical associations between life table
measures and economic development (f.e., Preston, 1975), and that the
HMD is more skewed toward industrialized countries.

Conclusion

The goal of this work is to introduce convex hulls to demography, as tools
for exploratory data analysis (in the sense of Tukey, 1977). We make the
case for the use of convex hulls as the best way, in some cases, to discern

19. The Lambda countries are: Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba,
Dominican Republic, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Pan-
ama, Paraguay, Peru, Uruguay, Venezuela.
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certain patterns in demographic data, such as identifying outliers. Addi-
tionally, we present a diversity of descriptive statistics that can be applied
to comparative convex hull analysis, including point-, area-, and diame-
ter-based measures. We also introduce a correlation measure based on
hull diameters. One of the themes of Gnanadesikan'’s fine textbook (1997)
on multivariate methods is that more often than not, there are multiple
ways to get the same substantive answer. We believe that, sometimes, the
path from point A to point B is shorter when convex hulls are used.

Convex hulls can bring certain patterns into sharp relief when they might
otherwise hide in the data. A number of the findings brought out by the
convex hulls approach - for example female cohort mortality patterns in
Victorian England and Wales, or Iceland’s move from worst to first - are
more clearly and quickly seen with convex hulls than with other tech-
niques. Verification of these patterns using more time-tested techniques
(f.e., the bottom panel of Figure 6) does not seem to us to be a weakness
of the convex hull approach. What is more, convex hulls provide a frame-
work for generalizing gaps and lags to multiple dimensions, not always
with the same conclusions as the univariate case.

Another strength of the convex hull approach is the number of different
descriptive statistics they generate, as demonstrated in the tables. These
statistics are influenced by the extremes of the data, not the central
tendencies — which may or may not be an asset, depending upon the ap-
plication. For example, the diametric correlation more readily identified
Finnish males as an outlier in the period: cohort analysis, compared to
canonical correlations. In cases where outlying observations dominate,
and cause peculiar difficulties for convex hull analysis, the data may be
(appropriately enough) Tukey peeled one or more times.

Traditional approaches to data analysis, using conditional means, are
very well explored. Working with data clouds considered as clouds are
what convex hulls have to offer. Not as a replacement of conditional
mean-based approaches, but as a complement. This is the first work of
which we are aware that makes extensive use of convex hulls as an ana-
lytic tool or framework for population data. We hope our analysis demon-
strates convex hull analysis as a promising tool for demographers. We en-
courage population scientists to consider their use. Certain modifications,
such as stratifying the country-peeling approach by time period, are also
worth considering but are beyond the present scope, which is designed
to introduce the hull approach to population studies. Another extension
would be to study the mortality relationship under the logit (Brass, Coale,
1968) or log (-log(:)) (Llewelyn, 1968; Thatcher, 1990) transformations
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(see footnote 7 on transformations). Yet another approach could be to
look at first-differences in the time series of the mortality relationship.

One of the strengths of our approach is that we use convex hulls as a de-
scriptive tool, and as such there are no assumptions that can be violated.
As with all analytic tools, convex hulls have some potential limitations.
Convex hulls are only as good as the data used to construct them; they are
not a guarantee to detect defective data. Convex hulls are determined by
extreme values. As such, convex hulls should prove to be quite useful in
the identification of defective data; outliers become readily apparent.
Country peeling is a technique introduced here to identify outliers in en-
semble life table databases. However, they can only be used to identify
outliers in certain senses: some points that are classified as outliers by
some other measures, such as Gower distance (Gower, 1966), may lie in-
side the convex hull of the data.

Convex hulls compliment standard approaches, and we do not propose
them as a replacement for anything. The usefulness of convex hulls in
population studies is not limited to the mortality relationship. Applica-
tion to the demographic transition (Kirk, 1996) seems especially promis-
ing. Historical demography is another area in which convex hulls could
be applied profitably, with «log(GRR) plots» - i.e., graphs with log(GRR)
on the y-axis and log(e(0)) on the x-axis (Wachter, 2014, p. 133) - partic-
ularly inviting.
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Appendix I: Sex-specific hulls for all countries

This appendix shows the male and female sex-specific hulls, except for Iceland
and the United States, which are shown in Figure 4.
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Appendix II: Period-cohort hulls for all countries

This appendix shows the period-cohort hulls for all countries apart from Finland
(which is shown in Figure 5 in the main text). Period hulls are colored red (fe-
males) and blue (males); cohort hulls are yellow. Where period and cohort hulls
overlap, the colors are orange (females) or green (males). Period hulls are con-
strained to the same time range as the cohort data. Underplotted white regions
are the full extent of available period data; see Figure 5 caption for more details.
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Appendix lll: Peeled hulls for all countries

This appendix shows the country-peeled hulls for all countries in which peeling
has an effect, apart from Iceland (which is shown in Figure 7 in the main text).
(Note that for Belarus, Estonia, and Russia, the difference between the master
and peeled hulls is a barely-visible sliver.)
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Russia
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Appendix IV: Country peeling, 5-year life tables

This appendix replicates, in part, the country peeling analysis of §iii of the Re-
sults, using five-year (of time) life tables from the HMD.

Adult vs child mortality, by sex, for five-year (of time) life tables. Top row: This is
a replication of Figure 2 in the main paper. Bottom row: This is a replication of
Figure 7 in the main paper.
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TABLE 5 Country peeling. Replication of Table 4 of the main text,
using five-year (of time) life tables
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