

**Proceedings of IBEC 2018, Beijing, China, October 23-25** P0-142

## Effects of hypoxia preconditioning on acute hypoxic exerciseinduced phosphorylation of AMPKα in mice skeletal muscle

Hao Wei,Lin jia Wang,Ying Zhang Beijing Sport University

**Objective** AMP-activated protein kinase (AMPK) is a metabolic energy sensor and its activation plays an important role in the regulation of energy homeostasis. Increasing evidence indicates that AMPK activation depend on the phosphorylation sites in AMPK $\alpha$ . Thr<sup>172</sup> is involved in AMPK activation, whereas Ser<sup>485/491</sup> are not. Under suitable stress stimulations, the phosphorylation of AMPK $\alpha$  at the Thr<sup>172</sup> site can increase AMPK activation. However, serious hypoxic exercise or taking antioxidants before exercise can reduce the activation of AMPK by phosphorylating AMPK  $\alpha$ 1Ser<sup>485</sup>/ $\alpha$ 2Ser<sup>491</sup> sites. The aim of this study was to investigate the effects of hypoxia preconditioning on exhaustive exercise under hypoxic condition induced AMPK $\alpha$  Thr<sup>172</sup> and Ser<sup>485/491</sup> phosphorylation in mice skeletal muscle.

**Methods** The 40 eight-week-old male C57BL/6J wild type mice were randomly divided into four groups (10 mice /group): non-hypoxia preconditioning control group (NC), hypoxia preconditioning control group (HC), non-hypoxia preconditioning acute hypoxic exercise group (NE), and hypoxia preconditioning acute hypoxic exercise group (HE). Hypoxia preconditioning groups were exposure in hypoxia for 48h, with the oxygen concentration was 11.2%. Meanwhile, non-hypoxia preconditioning, acute hypoxic exercise groups finished an exhaustive exercise. Tibialis anterior muscles of mice were collected immediately after the exhaustive exercise. The protein expression of the total AMPK $\alpha$ , Thr<sup>172</sup>-AMPK $\alpha$  phosphorylation, and Ser<sup>485</sup>-AMPK $\alpha$ 1/Ser<sup>491</sup>-AMPK $\alpha$  2 phosphorylation were measured by Western Blot. Thr<sup>172</sup>-AMPK $\alpha$  phosphorylation to total AMPK $\alpha$  ratio was calculated.

**Results** Compared with NE group, The Thr<sup>172</sup>-AMPKα phosphorylation to total AMPKα ratio was increased significantly, whereas the relative expression of Ser<sup>485</sup>-AMPKα1/Ser<sup>491</sup>-AMPKα2 phosphorylation to total AMPKα ratio seemed to decreased in skeletal muscle of HE group. **Conclusions** The 48h hypoxia preconditioning could improve the AMPK activation by Thr<sup>172</sup>-AMPKα phosphorylation in mice skeletal muscle following an exhaustive exercise under the hypoxic condition.